
INTRODUCTION
Orthopaedic joint replacement surgeries around the world have 
a market share of around 20 billion USD as of 2019 and its usage 
is projected to increase rapidly at a rate of 7.6% annually. Out of 
which knee replacement alone constitutes 9.45 billion making 
hip, knee and shoulder most common among joint replacement 
surgeries. There is a wide choice of biomaterials used in the 
joints ranging from metals, bio-ceramics to synthetic polymers. 
However, synthetic polymers are usually preferred over others 
(like metals and bio ceramics) because unlike metals they have 
relatively lower wear and they are not as brittle as bio ceramics. 
Teflon was initially introduced as the choice of femoral head 
and acetabular cup in hip implants but was later proven to be 
ineffective.1 Since, then many alternatives have been explored 
as bearing materials but UHMWPE stands out among the rest 

because of its excellent mechanical properties. Researchers 
have studied UHMWPE extensively over years to understand 
its properties of UHMWPE and figure 1 depicts the number 
of publications over years done on this topic.
A thermoplastic polymer with a molecular weight of 2–6 
million g/mol (2–6*106 g/mol), UHMWPE is made up of 
linearly branching ethylene units. It is produced utilizing the 
Zeigler process, which involves the massive polymerization 
of ethylene gas into UHMWPE resin powder. Later, a RAM 
extruder (to create rods) or a compress mould (into a sheet)
are used to solidify this resin powder. Later, this prepared 
rod is machined by either milling (multi-point cutting) or 
turning into the desired shape (single-point cutting). After 
being machined, it is sterilized using gamma radiation in an 
inert environment, an electron beam, ethylene oxide, or gas 
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plasma, and it is then packed in an inert environment.2,3,4  
Therefore, the UHMWPE rod that was obtained is known as 
conventional or virgin UHMWPE.

It wasn’t until the late 20th century until it became evident 
that osteolysis in individuals who had undergone implantation 
was caused by wear debris/particles created from the bearing 
materials. Although it has been demonstrated that cross-
linking the polymer chains in virgin UHMWPE increases 
wear resistance in the bearing material, the results were 
unsatisfactory. By increasing density and using radiation 
cross linking to do so, the wear rate can be further decreased. 
During the irradiation process, C-C and C-H bonds are broken, 
causing the creation of free radicals. These radicals are then 
aggregated to provide an increased cross-linking density. A 
small number of the free radicals produced in the crystalline 
domains remain unbonded because not all of them are mobile 
enough to form bonds with other radicals. These free radicals 
(unbonded) result in early oxidation. Hence, they are either 
imparted with enough kinetic energy to make them mobile 
enough and bond to other free radical species or treated with 
radical scavengers like antioxidants (Vitamin E, PBHP, OBHC, 
IBHC) to eliminate them.

In this review, we will investigate several ceramic 
and polymer-based fillers as an alternative to currently 
used methods such as improved radiation cross-linking 
and antioxidant treatment. Composite materials are a 
heterogeneous combination of several components. The 
majority of naturally occurring biomaterials are composites, 
such as cartilage, bone, and dentin. The volume of the filler, the 
filler’s shape, and the manufacturing conditions used to create 
the composite material all have an impact on the tensile and 
tribological properties of the material. They are made utilizing 
a variety of processes, including injection moulding, gel 
casting, compression moulding, and extrusion (ram & screw). 
A variety of techniques, including TEM (tunneling electron 
microscope), SEM (scanning electron microscope), DSC 
(differential scanning calorimetry), FTIR (Fourier Transform 
Infrared Spectroscopy), and others are used to characterize 
the composite once it has been created.5 Utilizing a universal 
testing equipment, bend testing and small punch testing are 
performed in order to evaluate various mechanical qualities. 

To measure tribological parameters including wear volume and 
coefficient of friction, tribometers like pin on disc, pin on plate, 
and ball on disc are typically employed (which is calculated 
during the wear test as a function of sliding distance against 
different materials).
Orthopaedic Applications 
Numerous studies have found that UHMWPE offers an 
environment that is favourable for the development of cells 
including fibroblasts, osteoblasts, and macrophages. UHMWPE 
is employed in load-bearing applications in orthopaedics 
because to its superior tensile qualities and biocompatibility. 
Total hip arthroplasty (THA), Total knee arthroplasty (TKA), 
and Total shoulder replacement are the three most popular 
types of joint replacement (TSR). UHMWPE is employed as 
a plastic liner at the bone’s articulation junction in each of 
these instances. Joint replacements are frequently redone due 
to wear particles ripped from the bearing material, even if they 
can be successful in some circumstances. Hips are ball-and-
socket joints (acetabulum and femur) morphologically (where 
the hip has a concave socket at the pelvis called acetabulum). 
In THA, the damaged cartilage or bone is surgically replaced 
with artificial biomaterial, such as a metal or ceramic ball, a 
metal or titanium alloy stem, and a plastic liner that typically 
contains a low-friction and highly wear-resistant polymer (like 
UHMWPE). The humeral head is fitted into a glenoid cavity 
at the shoulder’s ball and socket joint. In TSR surgery, the 
diseased cartilage or bone is surgically replaced with artificial 
biomaterial, such as a plastic liner typically made of polymer 
(like UHMWPE) with a low coefficient of friction and high 
wear resistance, and metal/ceramic-based ball and metal-based 
stem (steel and titanium alloys). Speaking of the knee, it is a 
hinge joint made up of the femur at the lower end, the tibia on 
top, and the patella on the back. In TKA, a diseased or damaged 
portion of the knee is replaced with an artificial biomaterial. 
Round, finished implants are attached to the femur to imitate 
the normal state of the bone, and the tibia component contains 
a stem that is inserted inside the bone.
Ceramic Based Fillers
Ceramics are non-metallic powders of an inorganic type that 
are created from fine powdered ingredients, water, and a binder, 
then dried out using thermal treatment and thereafter subjected 
to sintering. Due to bad production practices, ceramics 
were fragile, but the development of current, cutting-edge 
fabrication techniques made them sturdy. A variety of ceramic 
materials, including mixed-oxide ceramics, bioactive ceramics, 
bioactive glasses, and bioactive bone cements, are employed in 
arthroplasty.6,7 Because of their exceptional biocompatibility—
which results from their non-toxicity, non-inflammatory, and 
non-carcinogenic nature—they are employed in orthopaedics. 
They can be further divided into comparatively inert ceramics, 
which are nonabsorbable like alumina and zirconia, semi-
inert ceramics, which are bioactive like hydroxyapatite, and 
non-inert ceramics, which are biodegradable like calcium 
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phosphate, depending on how inert they are.
(i). Relatively inert ceramics 
They are generally used for structural support in implants since 
they are wear resistant and corrosion resistant, hence their 
name inert ceramics. Examples include aluminum oxides and 
zirconia ceramics. They are used in femoral heads, bone plates, 
acetabular reconstruction and in ventilation tubes.
Alumina toughened zirconia 
Zirconia is frequently referred to as ceramic steel and has 
exceptional mechanical, chemical, and tissue compatibility 
qualities. Zirconia’s use in load-bearing applications was made 
possible by the discovery of phase transformation toughening, 
or the transition from a stable monoclinic symmetry to a meta-
stable tetragonal configuration.8 Usually, divalent (MgO) or 
trivalent (Y2O3, Yttria) oxides are added (preferably, 3 wt% of 
Y2O3) to stabilize it in tetragonal phase at ambient temperature 
and prevent it from reverting to its native monoclonal 
symmetry. Despite having remarkable load bearing and 
fracture resistant qualities, yttria stabilised zirconia is easily 
susceptible to the process known as “ageing,” which occurs 
when it comes into contact with water in its tetragonal state.8 
Alumina hardened Zirconia is created by further combining it 
with Al2O3 to slow down the pace of ageing (ATZ).

For mixing with ATZ resin powder, UHMWPE with an 
ideal mol. wt. of 3-6*106 g/mol is preferred. Zirconia is vacuum 
dried and mixed with alumina (80 weight percent 3 mol yttria 
stabilized zirconia and 20 weight percent alumina). There are 
various mixing techniques available to aid the mixing process, 
such as wet mixing (the use of solvents such as ethanol) or dry 
mixing techniques (like ball milling and impact milling). The 
type of mixing method used in the preparation of UHMWPE/
ATZ composites has a significant impact on their mechanical 
properties because mixing techniques ensure the even 
distribution of filler composites.9 Table 1 compares mechanical 
properties of various UHMWPE-ATZ composites at different 
concentrations. It was shown that zirconia distribution is 
relatively even if it is added in lesser concentrations like 
2.5w.t% than compared to 5w.t%, 10w.t% and 20w.t% when 
mixed using dry mixing techniques, as mentioned already. 10

Mechanical properties
The effect of filler concentration on the composite material’s 
Young’s modulus is found to be linear. The Young’s modulus 
increased slightly as the filler concentration increased (from 
2.5 wt% to 20 wt% ATZ). Other properties, such as stress 
and strain at yield pattern, hardness, and plasticity index, 

follow a different pattern, in which they initially increase 
(when the filler concentration is increased from 2.5 wt% to 10 
wt% ATZ) and then decrease (when the filler concentration 
is increased further).10 Aside from the amount of filler used, 
the mixing technique used has a significant impact on the 
overall mechanical properties because mixing ensures uniform 
distribution of the filler in the polymer, which aids in overall 
strengthening of the composite material. the composites were 
prepared using a blender (turbula mixer) yielding in poor 
tensile properties even at higher concentrations of fillers like 
20 w.t%. Surprisingly, the fillers that are prepared using ball 
milling even at a filler concentration as low as 2.5 w.t % had 
almost similar Young’s modulus and even better hardness and 
plasticity index than compared to composite prepared by using 
blender with filler concentration of 20 w.t%.9

Tribological properties 
Table 2 compares tribological properties of various alumina 
zirconia combinations over UHMWPE composites. The 
addition of a lubricating layer at the articulation junction, 
typically composed of ceramic on metal (COM), ceramic 
on polymer (COP), or ceramic on ceramic (COC), is one 
way to improve tribology using conventional UHMWPE. A 
lubricating layer applied to the polymer counter face reduces 
friction and wear volume. Niobium was chosen as a lubricant 
in the current study.11 because it is bio-compatible and resistant 
to crack propagation. When discs made of alumina, ATZ, 
and niobium coated ATZ were allowed to slide against a load 
material (made of UHMWPE polymer) in a tribometer to 
evaluate tribology, they showed lower wear rate and frictional 
coefficient. This is due to the to the change in the grain 
boundary between ATZ and UHMWPE matrix, any stress 
that is generated due to the sliding motion are transferred to 
the lubricant that is in between the ceramic and polymer (as 
in case of COP)
Semi-inert ceramics 
Also called as bio active ceramics, are the ceramic material that 
are capable of interacting with the living tissue and assist in 

Table 1: Comparison of mechanical properties of various UHMWPE-ATZ composites

Composite & 
concentration material Mixing technique Youngs modulus 

(E), Mpa
Strain at yield 
point, (Mpa)

Stress at the 
break, (Mpa)

Hardness 
(D)

Plasticity index 
(D/E) Ref.

2.5 w.t% ATZ-UHMWPE Ball milling 620 ± 47 20.2 ± 2.7 42.2 ± 2.4 69 ± 1 0.111 [9]
2.5 w.t% ATZ-UHMWPE Turbula mixer  537 ± 36 20.2 ± 1.8 49.2 ± 5.0 65 ± 1 0.121 [10]
10 w.t% ATZ-UHMWPE Turbula mixer 541 ± 23 17.0 ± 0.1 35.5 ± 1.4 67 ± 2 0.123 [10]
20 w.t% ATZ-UHMWPE Turbula mixer 636 ± 37 19.5 ± 1.0 36.0 ± 3.1 66 ± 1 0.103 [10]

Table 2: Comparison of tribological properties of various alumina 
zirconia combinations over UHMWPE composites

Composite & 
concentration material

Frictional 
coefficient

Wear rate  
(mm3 /N m) Ref.

Al2O3 0.39 105*10-7 [11]
Al2O3-nZrO2 0.25 14.5*10-7 [11]

Al2O3-nZrO2/Nb 0.22 6.7*10-7 [11]
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repairing them. Hydroxyapatite (HA) is a prominent member 
of this category owing to its ability in osteo-conduction.
Hydroxyapatite
Because of its structural similarity to natural bone, 
hydroxyapatite is widely used in medical applications,12 
particularly as fillers in orthopaedic load bearing applications 
due to its superior biocompatibility. Despite its excellent 
biocompatibility, it has poor mechanical properties, so it is 
reinforced with a polymer with better mechanical properties, 
such as UHMWPE. There have previously been numerous 
attempts to develop HA composites so that the resulting 
composite material has superior mechanical properties without 
sacrificing biocompatibility and tribological properties. 
Because HA and UHMWPE interact poorly with each 

other, many strategies such as the addition of stabilizers 
and surface modification were used to improve the affinity. 
Many stabilizers, such as organophilic montmorillonite 
(Organophilic Bentonite, BO), have been used to make HA 
compatible with UHMWPE.13 Because of its swelling and 
adsorption properties, bentonite is commonly used in drug 
delivery systems. When bentonite is combined with an 
organic molecule to increase its affinity for organic molecules, 
as in many biomedical applications, the result is known as 
Organophilic Bentonite. Furthermore, mixing techniques such 
as ball milling have been used to ensure uniform distribution 
and reduce particle size, thereby increasing total surface area 
and assisting in better load transfer. The composites can be 
prepared using both wet and dry mixing techniques. Other peer 

Table 3: Comparison of mechanical properties of various UHMWPE-hydroxyapatite composites

Composite & concentration material Preparation technique Youngs modulus 
(E), Mpa

Yield strength 
(MPa)

Ref.

UHMWPE / HA 10 w.t%

UHMWPE / HA 10 w.t% / 0.1 w.t% 
GNP

UHMWPE / HA 10 w.t% / 1.0 w.t% 
GNP

UHMWPE / HA 30 w.t%

UHMWPE / HA 30 w.t%

UHMWPE / HA 50 w.t%

Swelling treatment followed by hot 
pressing

Swelling treatment followed by hot 
pressing

Swelling treatment followed by hot pressing

Without Ball milling and swelling treatment 
followed by hot pressing

Ball milling and swelling treatment followed by 
hot pressing

Swelling treatment followed by twin 
screw extrusion into pellets that are further 
compression molded

568 ± 46 

712 ± 32

861 ± 93

1364 ± 78

1633 ± 73

8000 ± 800

17.46 ± 0.4

18.45 ± 0.6

18.93 ± 0.9

8.6 ± 0.4

12.0 ± .4

28.4 ± 1.6

[14]

[14]

[14]

[15]

[15]

[16]

Table 4: Comparison of tribological properties of various UHMWPE-hydroxyapatite composites

Composite & concentration material Coefficient of friction Wear rate (10-6) m3 Wear volume (mm3) Ref.

UHMWPE / HA 7 w.t%

UHMWPE / nano-HA 10 w.t%

UHMWPE / micro-HA 15 w.t%

UHMWPE / HA 10 w.t% / 0.1 w.t % 
GNP

UHMWPE / HA 10 w.t% / 1.0 w.t % 
GNP

0.092 ± 0.003

0.070

0.080

0.082

0.077

 0.056

0.310

0.130

0.40

0.38

[17]

[18]

[18]

[14]

[14]
UHMWPE / HA 20 w.t% 

UHMWPE / HA 20 w.t% / BO 10 w.t%

0.055

0.035

0.0075

0.0040

[19]

[19]
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fillers, such as GNP, are sometimes used in conjunction with 
HA to reinforce UHMWPE. Furthermore, swelling treatment 
has been found to be effective in facilitating uniform dispersion 
of the filler in the polymer as it reduces swelling. Sometimes, 
other peer fillers like GNP are also used in together with HA to 
reinforce UHMWPE. In addition, swelling treatment is found 
to be effective in easing uniform dispersion of the filler in the 
polymer as it reduces the viscosity and improves the chain 
mobility of the polymer.
Mechanical properties
Table 3 compares mechanical properties of several UHMWPE-
hydroxyapatite composites. The effect of HA on the mechanical 
strength of the composite is dependent not only on the amount 
of filler used and the type of treatment used in the preparation 
of the composite, but also on the mixing technique used (such 
as ball milling). Mixing techniques not only aid in better 
dispersion but also significantly reduce the size of the filler 
particles (HA), allowing for more surface area and thus better 
load transfer. Fillers that have been ball milled have a 19% 
higher Young’s modulus and a 39% higher yield strength than 
those that have not been mixed (that have undergone the same 
conc. processing conditions with the same concentrations.15 
When it comes to the amount of filler added to the composite, 
it has a positive effect (linear dependency between the 
amount of filler added to the polymer and the mechanical 
strength of the composite) on its strength.16 When the filler 
concentration was increased from 10% to 50% HA, the Young’s 
modulus increased from 568 to 8000 MPa. Within the same 
concentration range, the yield strength nearly doubled. When 
HA is added in higher concentrations (such as 50 wt%), the 
Young’s modulus of the composite increases dramatically.16 
These values are nearly identical to cortical bone values, 
but the coefficient of friction and tribological properties are 
inferior. As a result, other fillers with excellent tribological 
properties, such as GNP (graphene nano platelets), are added in 
low concentrations to the polymer alongside HA. However, the 
optimum HA concentration range for reinforcement purposes 
has been determined to be 10–20 wt%.
Tribological properties
Table 4 compares tribological properties of UHMWPE-
hydroxyapatite composites at different concentrations. The 
tribological properties of a composite material are influenced 
not only by the amount of filler added to the polymer, but also 
by the particle size of the filler.18 The optimal amount of filler 
for micro-sized HA required for reinforcing was determined 

to be 15% by weight. However, it was only 10% for nano-sized 
HA. In terms of the effect of filler concentration on properties 
such as coefficient of friction, wear rate and wear volume 
decrease significantly as filler concentration increases. From 
7 wt% HA to 20 wt% HA, the coefficient of friction decreased 
from 0.092 to 0.055.17,19 Although the coefficient of friction 
is better at lower HA concentrations (such as 10 wt%) when 
compared to virgin UHMWPE, other tribological properties 
such as wear rate and wear volume are not satisfactory. To 
address this issue, other fillers (such as GNP) are added to the 
polymer alongside HA (at concentrations less than or equal to 
10 wt% HA).14 When compared to HA alone and HA combined 
with GNP, adding BO to HA resulted in a lower coefficient of 
friction because BO acted as a thin line of interface for better 
load transfer.19

(iii). Non inert ceramics
They are also known as resorbable ceramics because the 
implants made of them degrade and are replaced by endogenous 
tissue over time. Tricalcium phosphate is a well-known 
resorbable ceramic. 
Polymer based fillers 
Polymeric (synthetic) biomaterials have an advantage over 
ceramic biomaterials in terms of shape-ability (film, sheet, 
fibre). Carbon-based nanoparticles, in particular, have excellent 
physical, chemical, and mechanical properties, making them an 
appealing choice of implant material in orthopaedics. Recent 
advances in various fabrication and modification techniques 
such as chemical vapour deposition, arc-discharge deposition, 
laser vaporization deposition, and ion beam assisted deposition 
have resulted in an exponential increase in evaluating the 
biomedical applications of carbon nanotubes (SWCNT, 
MWCNT) and carbon nano-structured diamond.20

Carbon nanotube (CNT)
Carbon nanotubes are made up of sheet-like six-membered 
carbon rings that are rolled up (either arm chaired or zig-zag) 
to form cylinders that can be single or multi-walled depending 
on the number of concentric layers surrounding them. They 
are commonly manufactured using Laser Ablation (graphite), 
Chemical Vapor Deposition (hydrocarbons), or Arc Vaporization 
(carbon rods). As a result of their high hydrophobicity, 
low biocompatibility, and high toxicity, prepared CNTs 
are unsuitable for medical applications. Depending on the 
interacting biomolecules, they are functionalized by oxidizing 
them with strong acids and conjugating them with amino acids, 

Table 5: Comparison of mechanical properties of various UHMWPE-CNT composites

Composite & concentration 
material

Composite preparation 
technique 

Young’s Modulus (MPa) ±SD 
(*SD = Standard Deviation)

Yield stress 
(MPa) ±SD

Ultimate tensile 
strength 
(MPa) ±SD

Ref.

0.01 w.t% SWCNT-
UHMWPE

Ultrasonication and 
hydraulic pressing 1699.03 ± 10.86 19.20 ± 0.11 35.20 ± 1.60 [26]

0.1w.t% SWCNT-
UHMWPE

Ultrasonication and 
hydraulic pressing 1739.83 ± 5.86 28.00 ± 0.11 51.20 ± 0.78 [26]

1w.t% MWCNT-UHMWPE Solution casting 1352.3 ± 40.70 12.38 ± 0.84 [28]
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or by coating them with amphiphilic molecules (like PEG, 
Poly Ethylene Glycol).21 Today, their applications are being 
vigorously researched in a variety of biomedical engineering 
disciplines (imaging diagnostics, tissue engineering, drug 
delivery, and biosensors).22 CNTs were introduced into 
the field of biomaterials due to their excellent mechanical, 
thermal, and electrical properties, as well as their durability. 
Despite numerous reports supporting CNT cytotoxicity and 
carcinogenicity on cells, their biocompatibility is being called 
into question. It has been demonstrated that different cell types 
respond dynamically to CNTs based on cell type, diameter 
(number of walls), chirality, and length. CNTs, on the other 
hand, promote osteocyte proliferation and calcification in bone 
cells. They are currently being studied as scaffolds for tissue 
regeneration due to their morphological (structural) similarity 
to commercially available scaffolds such as Tricalcium 
phosphate (TCP) and Hydroxyapatite (HA), as well as as a 
composite material with Poly Methyl Metha Acrylate (bone 
cement) due to their affinity for bone tissues.23 UHMWPE is 
first dissolved in ethanol (which is later removed using vacuum 
filtration), and then SWCNTs produced through ultrasonication 
and hydraulic pressing (with an ideal diameter of 1-2 nm and a 
length of 5-30 m) are ultrasonicated into it for better dispersion 
before compression moulding.24 A similar protocol is used to 
prepare MWCNT.25

Mechanical properties

Table 5 compares mechanical properties of various UHMWPE-
CNT composites at distinct concentrations. CNTs have a 
high elastic modulus of 1 TPa and tensile strengths ranging 
from 30 to 100 GPa, making them an excellent candidate for 
reinforcement. Stress-strain curves and tensile testing are used 
to evaluate the mechanical behaviour of UHMWPE-CNTs 
composites. SWCNTs are known for their unusual behaviour 
because they are made up of a single layer, as opposed to 
MWCNTs, which have many layers wrapped around them. 
In comparison to 0.01% and 0.1% CNT, 0.1% CNT has higher 
young’s modulus, ultimate tensile strength, and yield stress.
Tribological properties
Table 6 compares the tribological properties of various 
UHMWPE-CNT composites. The wear rate of CNT-
UHMWPE composite reduced when added in 1w.t%, contrary 
to the mechanical properties where 1w.t% yielded lower 
properties in tribological aspect it has better wear rate and 
coefficient of friction than compared to 0.5w.t%. This is due 
to structural changes but not shear strength.27

Graphene
Graphene is made up of a single layer of carbon atoms that 
are arranged in a two-dimensional pattern, as opposed to 
graphite, which has multiple layers of carbon atoms. Because 
of their larger surface area, they have better load transfer 
than CNTs. Due to its excellent mechanical, chemical, and 
electronic properties, graphene has a wide range of applications 
in biomedical,29 electronics, membrane technologies, and 
composite coatings. It has an elastic modulus of 1TPa (Tera 
Pascal) and an intrinsic strength of approximately 130 GPa 
(Gigapascal), for example, which is why it is used as a 
composite material in UHMWPE to improve wear resistance 
and other mechanical properties.30,31 Graphene-based 
UHMWPE composites can be prepared in a variety of ways, 
depending on the type of graphene used. Ball milling, for 

Table 6: Comparison of tribological properties of various UHMWPE-
CNT composites

Composite & 
concentration material

Wear rate (10-6) 
mm3/nm

Coefficient of 
friction Ref.

0.5 w.t% MWCNT-
UHMWPE 0.35 0.12 [27]

1w.t% MWCNT-
UHMWPE 0.30 0.096 [27]

Table 7: Comparison of tensile properties of various UHMWPE-graphene composites

Composite & concentration 
material

Composite 
preparation technique 

Young’s Modulus 
(MPa) ±SD (*SD = Standard 
Deviation)

Yield stress 
(MPa) ±SD

Ultimate tensile 
strength 
(MPa) ±SD

Ref.

0.1 w.t% GO
UHMWPE Ball milling 634.75 ± 30.59 23.86±0.92 33.51±4.05 [32]

0.1w.t% GNP-UHMWPE
Liquid phase 
(acetone) 
ultrasonication

690 ± 20 35 ± 1.4 77 ± 3.1 [33]

0.5 w.t% GO-UHMWPE

0.5 w.t% GNP-UHMWPE

Ball milling

Liquid phase 
(ethanol) 
ultrasonication

664.38 ± 28.32

770.4 ± 9.0

24.57 ± 1.19

14.30 ± 0.40

36.91 ± 3.98

20.60 ± 1.10

[32]

[34]

1 w.t% 
GO-UHMWPE Ball milling 644.26±29.40 23.97±1.13 33.12±4.09 [32]

1 w.t% GNP-UHMWPE
Liquid phase 
(acetone) 
ultrasonication

1190 ± 80 42 ± 2.1 68 ± 3.4 [33]
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example, is used to prepare graphene oxide (GO)-UHMWPE 
composites. When GO is reduced to form reduced graphene 
oxide (RGO), it is mixed with UHMWPE. While Graphene 
nano platelets (GNP)-UHMWPE composites are prepared 
by mechanical exfoliation of graphite, the suspension is then 
coated over UHMWPE using electrostatic spraying (ESP). 
GO and RGO are typically preferred over others due to their 
superior hydrophilicity and low-cost synthesis methods.
Mechanical properties
Table 7 compares tensile properties of various UHMWPE-
graphene composites at varying concentrations. Because of its 
high intrinsic strength and elastic modulus, graphene as a filler 
improves wear resistance in composites. Tensile properties 
such as Young’s modulus, yield stress, and ultimate tensile 
strength are the three major mechanical properties that are 
evaluated using tensile testing, which is done using a tensile 
machine that produces stress strain curves. All mechanical 
property parameters are derived from stress strain curves. The 
mechanical properties of various graphene materials at various 
concentrations that are combined with UHMWPE using 
various mixing techniques are listed in the table below. The 
amount of graphene fillers added matters because mechanical 
properties tend to decrease with increasing filler content after 
a certain amount. Even the processes that the material went 
through are directly reflected in its mechanical properties. 
When it comes to GO, its peak Young’s modulus, yield stress, 
and ultimate tensile strength are achieved at 0.5 wt%, after 
which they decrease. GNP 1 wt% has better overall tensile 
properties than other concentrations. Tensile properties tend 
to decrease beyond 0.5 wt% GO and 1 wt% GNP. As a result, 
these concentrations are thought to be optimal for reinforcing 
UHMWPE.
Tribological properties
Table 8 compares tribological properties of various UHMWPE- 
graphene composites. Reduced Graphene Oxide (RGO) is 
obtained by reducing graphene in order to prevent graphene 
oxide aggregation during hot pressing. It is added in various 
concentrations ranging from 0.1 to 3.0 wt% to determine the 
smallest concentration with the best properties. Tribological 
properties are evaluated using de-ionized water. RGO filler 
performed better at higher loading concentrations. For 
example, 3 wt% RGO-UHMWPE has the lowest coefficient 
of friction, making it tribologically superior to 0.1% and 1% 
RGO concentrations in UHMWPE.
Summary and Future Prospects

CNTs stand out in mechanical properties due to their 
exceptional tensile properties, which they induce into the 
composite material even at very low concentrations such as 
0.01 wt% and 0.1 wt%. Because of issues with biocompatibility, 
CNT reinforced UHMWPE is still in the testing stage and is 
not yet on the market. However, their tribological properties 
are adequate but not exceptional when compared to their 
competitors. Hydroxyapatite reinforced UHMWPE has the 
best tensile properties (but only at high concentrations such 
as 30wt%), followed by CNT. Because of their structural 
similarity to natural bone, they do not have biocompatibility 
issues like CNT. They also have superior tribological properties 
to CNT and ATZ composites. As a result, they are best suited 
for reinforcing purposes (with UHMWPE).
As more patients require joint replacement surgery, the 
orthopaedic community is looking for new biomaterials that 
will help artificial joints last longer. Polymer nanocomposites 
have demonstrated the ability to improve the wear behaviour 
of virgin UHMWPE in orthopaedic implants through the use 
of selected fillers. 
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