
INTRODUCTION
Epilepsy is one of the most common chronic neurological 
conditions, affecting an estimated 4 to 10 per 1,000 people 
worldwide, with up to 8% of individuals having at least one 
seizure during their lifetime.[1] Epilepsy is characterized by 
recurrent seizures and transient spikes of abnormal electrical 
activity in the brain. It has a severe effect on quality of life and 
imposes substantial personal, social, and economic burdens. 
The risk of early death of individuals with epilepsy is up to 
three times higher than for the general population,[2] which 
emphasizes the importance of efficient seizure detection and 
management techniques.

A key tool for diagnosing and monitoring epilepsy is 
electroencephalography, or EEG.[3] Practitioners can detect 
epileptiform patterns, such as spikes, sharp waves, and 
rhythmic discharges, that are suggestive of seizure activity 
by using scalp electrodes to non-invasively record the brain’s 
electrical activity. However, EEG’s diagnostic and predictive 
ability can be dependent on its capability to extract useful 
information from complex and non-stationary signals.[4]

EEG signals change dynamically throughout time due to 
the brain’s constantly changing activity, and seizure-related 
patterns frequently include brief, high-amplitude transients 

or evolving rhythmic discharges, depending on the type of 
seizure. Traditional time-domain features, such as mean, 
median, and variance, among others,[5] and frequency-domain 
techniques, such as the Fourier Transform, provide partial 
insights. Consequently, temporal and spectral information 
captured by time-frequency representations (TFRs) are now 
commonly used methods in EEG research.[6]

The wavelet transform (WT) and the short-time fourier 
transform (STFT) are two of the most often utilized TFR 
techniques.[7] Although STFT analyzes frequency content 
across time by segmenting signals into fixed-size windows, 
it has a fundamental trade-off between frequency resolution 
and time. Narrow windows increase temporal resolution but 
reduce frequency resolution, whereas wide windows do the 
opposite.[8] Wavelet-based approaches, such as the CWT, 
promote adaptability by enabling multiresolution analysis 
using scalable wavelet functions. The mother wavelet selection 
still has a significant impact on the result, though.[9] In addition, 
these techniques can give representations with signal energy 
dispersed across multiple frequencies.

Time and frequency reassignments were introduced to 
improve energy concentration in the time-frequency plane. 
SST, a type of reassignment method based on CWT, was 
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introduced by Daubechies et al.[10,11] SST improves energy 
concentration and separates multicomponent signals to produce 
a TF representation with better energy concentration and 
sharper resolution compared to the original WT. It acts as a 
reallocation method, by estimating the instantaneous frequency 
of signal components at each point in the WT’s time-scale plane 
and then “squeezing” or reassigning the WT coefficients to 
these estimated frequencies in the TF plane.

SST has been applied in various EEG-related applications. 
Yousif and Ozturk[12] used SST to obtain time-frequency 
representation matrices of EEG signals for motor imagery (MI) 
classification in BCI. They used principal component analysis 
for dimension reduction and feature extraction, followed by 
support vector machine (SVM) classification. Karakullukcu 
and Yilmaz[13] used SST (particularly, the Fourier-based 
synchrosqueezing transform, or FSST) to extract features 
for distinguishing between resting and motor imagery states 
in an EEG-based BCI. They used FSST with singular value 
decomposition (SVD) for feature selection and support vector 
machines for classification. Wang et al.[14] compared SST 
to other time-frequency analysis methods (Hilbert-Huang 
Transform and Morlet Wavelet Transform) to analyze TMS-
evoked EEG oscillations.

Cura and Akan[15] used time-frequency representations 
of EEG signals to detect epileptic seizures. They extracted 
features from these representations and used different machine 
learning classifiers for classification. Ozdemir et al.[16] used 
Fourier-based SST in conjunction with a convolutional neural 
network (CNN) for epileptic seizure detection and prediction. 
Amiri et al.[17] combined sparse common spatial pattern and 
adaptive short-time Fourier transform-based synchrosqueezing 
transform for automatic epileptic seizure detection in EEG 
signals.

Marchi et al.[18] presented the adaptive synchrosqueezing 
wavelet transform (ASST), which dynamically improves time-
frequency representations based on local signal properties. 
ASST extends the traditional synchrosqueezing transform 
(SST) by using adaptive reassignment rules and iterative 
refinement processes to increase wavelet-based representation 
resolution. ASST seeks to improve TF resolution efficiently 
while reducing computational load by iteratively estimating 
signal energy across frequency bands within data batches 
and reallocating a limited number of analysis frequencies to 
regions of interest. Despite its theoretical benefits, ASST is 
still underexplored in the area of Brain-Computer Interfaces 
(BCIs) and seizure detection.

Time-frequency methods like SST improve energy 
localization by concentrating spectral content near 
instantaneous frequencies, which can improve the visibility 
of short-lived, non-stationary events such as spikes or evolving 
rhythmic discharges seen in seizures. The ASST extends this 
principle by introducing computational adaptivity, which 
allows sharper and more informative representations while 
effectively focusing on the most relevant regions of the EEG.

To the best of the author’s knowledge, this study is the 
first application of ASST to neurological signal analysis, 

including epileptic seizure detection from EEG. This study 
explores the use of ASST to extract features from seizure 
EEG signals and compares its performance to other common 
approaches such as STFT and CWT. The explored pipeline 
extracts multiple spectral and statistical features from ASST-
based time-frequency representations. Classification is done 
using a variety of machine learning classifiers, such as SVM, 
random forest, and KNN.

The remainder of this paper is organized as follows: The next 
part outlines the methodology, including dataset details, feature 
extraction using the ASST, and the classification pipeline. 
This is followed by a presentation of the experimental results, 
including feature separability and classification performance. 
The subsequent section discusses the implications of the 
findings. The paper concludes with the conclusion section.

MATERIALS AND METHODS

Dataset Description
The dataset used in this study was the Epileptic Seizure 
Recognition Dataset, originally from the UCI Machine 
Learning Repository, and obtained via Kaggle. This 
dataset consisted of preprocessed EEG recordings from 
500 individuals, where each individual’s brain activity was 
recorded for 23.6 seconds.[19] The original recordings were 
sampled into 4097 data points per subject, representing the 
EEG signal at different time points. These EEG signals were 
collected to classify seizure activity and distinguish it from 
non-seizure states.
Segmenting and Labeling EEG Data
The dataset used in this study was a preprocessed and 
segmented version of a publicly available epileptic seizure 
recognition dataset. Each original 23.6-second recording was 
reshaped into 1-second segments of 178 samples, resulting in 
11,500 labeled segments.[20] Only class 1 segments represent 
epileptic seizure activity, while classes 2 through 5 represent 
non-seizure states. No further preprocessing was applied 
beyond what was provided. Each 1-second EEG segment was 
used as input for time-frequency feature extraction via the 
ASST.

The target variable (column 179 in the dataset) represented 
different brain states. There were five labels:
•	 Seizure Activity (Class 1)
 EEG recordings that contain seizure activity.
•	 Tumor Region EEG (Class 2)
 EEG signals recorded from the tumor-affected brain region.
•	 Healthy Brain (Class 3)
EEG signals recorded from a non-affected region of the brain 
in tumor patients.
•	 Eyes Closed (Class 4)
EEG signals recorded from individuals with their eyes closed.
•	 Eyes Open (Class 5)
EEG signals recorded from individuals with their eyes open.
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ASST for Feature Extraction
The ASST is a time-frequency analysis technique that extends 
the classical synchrosqueezing wavelet transform (SST) by 
introducing a dynamic, energy-based frequency discretization 
strategy. It is designed to improve time-frequency resolution 
while reducing computational cost, which makes it suitable for 
real-time and resource-constrained applications.
At its core, ASST operates in the same framework as SST. It 
begins by computing the continuous wavelet transform (CWT) 
of a signal ( )s t  using a complex mother wavelet ( )tψ :

( ) ( ) 1/2 *,s
t bW a b s t a dt

a
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From this representation, the instantaneous frequency is 
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These frequency estimates are used to reassign the energy 
of the wavelet coefficients into sharper ridges in the time-
frequency plane via the synchrosqueezing operation.

Unlike SST, which performs this reassignment on a 
fixed, uniformly spaced frequency grid, ASST introduces an 
adaptive grid { }kw  that is iteratively refined based on the energy 
distribution of the signal. The energy within each frequency 
bin over a frame of the signal is computed as:

and normalized:
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The normalized energy ( )ˆ
N kE w  guides the reallocation of 

frequency bins to regions of interest using either:
•	 Proportional distribution, where bins are assigned in 

proportion to energy.
•	 Or thresholding, where low-energy bins are discarded 

and reassigned to more informative regions.
•	 Once the adaptive grid is formed, the synchrosqueezing 

operation is recomputed over this updated frequency 
set.

Feature Extraction Using ASST
EEG signals were transformed into the time-frequency 

domain using the ASST, implemented with a threshold-based 
reassignment strategy set to 1/30 and Out-of-the-Loop (OTL) 
synchrosqueezing. The ASST was configured to span 0.5 to 80 
Hz over 159 linearly spaced frequency bins. From the resulting 
ASST energy distribution ( ),S t f , spectral features were 
extracted, including peak frequency (maximum energy), mean 

frequency (energy-weighted average), and spectral entropy. 
Band energy features were computed by summing energy 
within conventional EEG frequency bands (delta, theta, alpha, 
beta, gamma). In addition, statistical features such as mobility, 
complexity, skewness, and kurtosis were extracted directly 
from the raw EEG time series to capture signal morphology 
and variability.

To establish a fair comparison with the ASST-based 
pipeline, identical features were extracted from the time-
frequency representations obtained using short-time fourier 
transform (STFT) and continuous wavelet transform (CWT). 
The CWT was implemented using the complex morlet 
(CMOR) wavelet. For both methods, this study computed peak 
frequency, mean frequency, spectral entropy, and band energy 
across standard EEG frequency ranges. These were calculated 
by summing the squared magnitude of the time-frequency 
representation across time and integrating within the respective 
frequency bands, consistent with the ASST feature extraction 
strategy. Additionally, statistical features such as mobility, 
complexity, skewness, and kurtosis were derived directly from 
the raw EEG signal for all methods.
Extracted ASST Features
From the ASST representation, the following spectral and 
statistical features were computed:
Spectral Features

Peak Frequency (Hz)
The frequency with the highest energy concentration, defined 
as:

2
peak arg max | ( , ) |

f t

f S t f= ∑
Mean Frequency (Hz)
The energy-weighted average frequency:
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Spectral Entropy
 A measure of signal disorder, defined as:

Where ( ),S t f  represents the energy magnitude at time t  and 
frequency f .
Band Energy Features
The energy in specific frequency bands was extracted by 
integrating energy over predefined ranges:
•	 Delta (0.5–4 Hz)
•	 Theta (4–8 Hz)
•	 Alpha (8–12 Hz)
•	 Beta (12–30 Hz)
•	 Gamma (30–80 Hz)
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Statistical Features
In addition to ASST-based features, statistical measures were 
extracted from the raw EEG signal to quantify its distribution 
and variability:
Mobility
Measures signal smoothness, given by:

Complexity: Evaluates the degree of variation in signal 
mobility, defined as:

Where:
•	 xσ  is the standard deviation of the signal.
•	 Äxσ  is the standard deviation of the first derivative.
•	 2Ä x

σ  Is the standard deviation of the second derivative.
Skewness
Measures signal asymmetry.

( 3

3

[ )E x
S

µ

σ

− =

Kurtosis
Assesses the presence of outliers or extreme values in the 
signal distribution.

( 4

4

[ )E x
K

µ

σ

− =

Where:
•	 [ ]E ⋅  denotes the expectation (mean).
•	 µ  is the mean of the signal.
•	 σ  is the standard deviation of the signal.
Classification Pipeline
Extracted features were prepared for binary classification by 
relabeling class 1 as “Seizure” and grouping classes 2–5 as 
“Non-Seizure.” An 80/20 stratified train-test split was applied, 
and features were standardized using z-score normalization. 
Three classifiers, random forest, support vector machine (RBF 
kernel), and K-nearest neighbors, were trained using both 
the original imbalanced training data and a balanced version 
generated with SMOTE. Model performance was evaluated 
on the untouched test set using accuracy, precision, recall, 
F1-score, and AUC-ROC. To evaluate the robustness and 
generalizability of ASST-based features, identical classification 
procedures were applied to features extracted from short-time 
fourier transform (STFT) and continuous wavelet transform 
(CWT) representations.

This study used several exploratory tools to interpret and 
visualize the separability of extracted features. T-distributed 
stochastic neighbor embedding (t-SNE) was used to project 
the high-dimensional feature vectors into a 2D space, for 
qualitative visualization of class separation. Kernel Density 
Estimation (KDE) plots were generated for individual features 
to inspect seizure and non-seizure class-wise distributions. 
Additionally, Cohen’s d was computed for each feature to 
quantify its effect size between the seizure and non-seizure 
classes.

Figure 1: Pipeline for EEG-based seizure detection
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Implementation Details
The ASST was applied using the official Python package 
provided by Marchi et al.,[21], which is publicly available on 
GitHub. Time-frequency feature extraction was performed 
using the adaptivesswt library for ASST, pywt for continuous 
wavelet transform (CWT),[22] and scipy.signal for short-
time fourier transform (STFT).[23] Statistical descriptors, 
including entropy, skewness, and kurtosis, were computed 
using functions from scipy.stats module. Machine learning 
models were developed using the scikit-learn library [24], which 
provided tools for classification (SVM, Random Forest, KNN), 
evaluation metrics (accuracy, precision, recall, F1-score, 
AUC), and dimensionality reduction (t-SNE). To address 
class imbalance, the SMOTE algorithm[25] was applied using 
the imblearn package.[26] Data visualization, including KDE 
plots and t-SNE projections, was carried out using seaborn[27] 

and matplotlib.[28] This software environment supported 
the reproducible development and evaluation of all feature 
extraction and classification pipelines in the study.

RESULTS

Feature Separability and Visualization
This study used t-SNE to reduce the dimensionality of the 
retrieved features to assess their discriminative power. Feature 
clusters are visualized in a reduced 2D space in Figure 2. The 
observed separation between seizure and non-seizure instances 
showed that ASST-based features had discriminative power, 
comparable with traditional methods.

In addition, Cohen’s d was calculated for all features to 
determine their ability to distinguish between seizure and 
non-seizure states. Table 1 shows the top five most separable 
features, ranked by effect size. Gamma_energy had the 
largest effect size, suggesting that it plays an important role 
in distinguishing seizure from non-seizure states.

Figure 3 displays KDE plots for ASST-extracted features 
and their distribution across seizure and non-seizure classes. 
These visualizations offer information on the feature 
separability, with differences in spectral energy, frequency 
characteristics, and statistical characteristics between the 
two conditions. Band energy features have distinctive density 
distributions, which suggests that they may be useful for 
seizure classification.
Classification Performance
This section presents the classification results for seizure 
detection with ASST-based features, along with results 
from other methods’ features. The performance of three 
machine learning classifiers, random forest (RF), support 
vector machine (SVM), and K-nearest neighbors (KNN) was 
evaluated both before and after applying synthetic minority 
over-sampling technique (SMOTE) to address class imbalance.
Classification performance before SMOTE
Before applying SMOTE, the dataset had a large class imbalance, 
with 9200 non-seizure instances much outnumbering 
2300 seizure instances. This mismatch frequently causes 

classification models to favor the majority class, potentially 
leading to inferior seizure detection performance. For the 
ASST, the RF classifier achieved highest accuracy (98.96%), 
while maintaining strong precision (98.23%) and recall 
(96.52%) and a high AUC-ROC score of 0.9991. The SVM 
followed closely with 98.39% accuracy, though its seizure 
recall (95.43%) was slightly lower. Meanwhile, KNN fared 
well, reaching 98.52% accuracy and 98.41% precision, while 
its recall (94.13%) was slightly reduced. Overall, as Table 2 
shows, RF, SVM and KNN performed well in classification 
before SMOTE was applied.
CWT classification results
The CWT was used to extract the same features from the 
same EEG dataset for comparison. The classification results 
are shown in Table 3.
STFT Classification Results
The short-time fourier transform (STFT) was used on the 
dataset to extract the same set of features. The classification 
results are provided in Table 4.
Classification performance after SMOTE
To address class imbalance, SMOTE was applied to ensure 
an equal representation of seizure and non-seizure instances. 
As shown in Table 5, this balancing improved seizure 
detection recall while maintaining high precision across 
classifiers. Using ASST-derived features, the RF classifier 
achieved a slight improvement, reaching 99.09% accuracy 
with an increased recall of 97.61% and a consistently high 
AUC-ROC of 0.9990. The SVM exhibited a significant recall 
boost (98.04%), though its precision slightly declined due to 
increased sensitivity to seizure cases, resulting in an overall 
accuracy of 98.13%. Similarly, the KNN classifier saw recall 
improvements (96.52%), achieving an accuracy of 98.04%. 
Comparing alternative methods, CWT features led to an 
RF accuracy of 98.91%, with an exceptional AUC-ROC of 
0.9992, while SVM reached 98.22% accuracy with strong 
recall (97.17%). The STFT produced comparable results, with 
RF achieving 98.78% accuracy and an AUC-ROC of 0.9990, 
while SVM maintained a high recall of 98.26%.

DISCUSSION
This study explored the use of Marchi et al.’s[18] ASST, a 
time-frequency analysis technique, for EEG-based epileptic 
seizure detection. The classification results show that seizure 
and non-seizure events can be effectively distinguished 
using features derived from ASST. In terms of accuracy and 
overall classification performance, ASST performed slightly 
better than CWT and STFT. These findings confirm the 
discriminative efficacy of ASST-derived features in seizure 
detection. The random forest model delivered the best overall 
performance out of all the classifiers evaluated, with an 
accuracy of 99.09%, F1-score of 97.61%, and ROC-AUC of 
0.9990. This reflects a good balance between sensitivity and 
specificity, with few misclassifications. The support vector 
machine (SVM) and K-nearest neighbors (KNN) classifiers 
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likewise produced excellent results. The consistently high 
performance across all models suggests robust generalization 
and stable classification across seizure and non-seizure classes.

ASST’s slightly better performance across assessment 
measures can be attributed to its adaptive and iterative 
reassignment framework, which allows for more precise signal 
energy localization in the time-frequency domain. ASST 
dynamically adapts to the signal’s local properties.[18,29] This 
adaptivity results in a better concentration of spectral energy 
near the instantaneous frequencies. ASST’s properties improve 
the clarity of transient and non-stationary patterns present in 
EEG data, which allows the extraction of more discriminatory 
features. Overall, ASST’s structural adaptivity provides a 
meaningful advantage over traditional methods, particularly 
in contexts that demand high temporal and spectral precision.

However, there are some drawbacks to these benefits. 
Since ASST extends CWT with synchrosqueezing and 
adaptive reassignment steps, each requiring multiple passes 
over the signal, it can incur higher computational costs than 
traditional TFR methods such as STFT or CWT alone. This 
makes it more computationally demanding when used with 
larger EEG recordings or in real-time settings. Furthermore, 
the accuracy was comparable for all methods. This implies 
that STFT or CWT may still be sufficient for tasks like simple 
signal visualization where interpretability or computational 
efficiency are more important than resolution.

Study Limitations and Future Directions
While the study showed promising results, several limitations 
should be acknowledged. First, the analysis was performed on 
the UCI epileptic seizure recognition dataset that is commonly 
used in seizure detection research and has been shown to have 
relatively good classification accuracies.[30-32] This might not 
accurately represent the noise and variability seen in real-
world clinical EEG recordings. Future research might include 
evaluating performance on different datasets.

Second, due to the absence of subject labels, this study does 
not explore inter-patient variability. Although this does not 
impact the primary purpose of this study, future work could 
examine subject-specific adaptation or generalization using 
datasets with richer metadata. Additional research could also 
investigate the physiological interpretability of the features.

While this study focused on the application of ASST for 
EEG-based seizure detection, ASST, like STFT and CWT, is 

Figure 2: Two-dimensional t-SNE projection of ASST-extracted features, illustrating the clustering of seizure (yellow) and non-seizure (blue) EEG 
instances.

Table 1: Top five features ranked by their Cohen’s d effect sizes 

Rank Feature Cohen’s d

1 Gamma_energy 1.3515
2 Beta_energy 1.1625
3 Delta_energy 0.9927
4 Theta_energy 0.8508
5 Alpha_energy 0.8312
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Figure 3: Kernel Density Estimation (KDE) plots of ASST-derived features for seizure (orange) and non-seizure (blue) EEG segments, illustrating 
feature distributions. The features, shown in order from left to right and top to bottom, are: Peak Frequency, Mean Frequency, Spectral Entropy, 

Delta Band Energy, Theta Band Energy, Alpha Band Energy, Beta Band Energy, Gamma Band Energy, Mobility, Complexity, Skewness, and 
Kurtosis.

Table 2: Classification results using features extracted with ASST before SMOTE

Classifier Accuracy Precision Recall F1 Score AUC-ROC

Random Forest 98.96% 98.23% 96.52% 97.37% 0.9991

SVM 98.39% 96.48% 95.43% 95.96% 0.9987

K-Nearest Neighbors 98.52% 98.41% 94.13% 96.22% 0.9909

Table 4: Classification results using features extracted with short-time fourier transform (STFT) before SMOTE.

Model Accuracy Precision Recall F1 Score AUC-ROC

Random Forest 98.65% 96.94% 96.30% 96.62% 0.9991

SVM 98.61% 97.14% 95.87% 96.50% 0.9986
K-Nearest Neighbors 98.35% 97.31% 94.35% 95.81% 0.9886

Table 3: Classification results using features extracted with CWT before SMOTE

Classifier Accuracy Precision Recall F1 Score AUC-ROC

Random Forest 98.91% 97.59% 96.96% 97.27% 0.9991

SVM 98.35% 97.52% 94.13% 95.80% 0.9981

K-Nearest Neighbors 98.26% 97.73% 93.48% 95.56% 0.9874

Table 5: Classification results for ASST, CWT, and STFT features after SMOTE balancing.

Feature Set Classifier Accuracy Precision Recall F1 Score AUC-ROC

ASST Random Forest 99.09% 97.82% 97.61% 97.71% 0.9990
SVM 98.13% 92.99% 98.04% 95.45% 0.9981
KNN 98.04% 93.87% 96.52% 95.18% 0.9907

CWT Random Forest 98.91% 96.77% 97.83% 97.30% 0.9992
SVM 98.22% 94.11% 97.17% 95.61% 0.9970
KNN 97.74% 92.86% 96.09% 94.44% 0.9860

STFT Random Forest 98.78% 96.35% 97.61% 96.98% 0.9990
SVM 98.48% 94.36% 98.26% 96.27% 0.9982
KNN 98.00% 92.77% 97.61% 95.13% 0.9891
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a versatile time-frequency analysis method. Future studies 
could explore its use in other areas involving non-stationary 
signal analysis, such as in other biomedical signal processing 
domains.

CONCLUSION
In conclusion, this study demonstrated the effectiveness 
of the ASST for feature extraction in EEG-based epileptic 
seizure detection. ASST-derived features allowed for 
reliable differentiation between seizure and non-seizure 
EEG segments and achieved slightly higher classification 
performance than conventional time-frequency methods such 
as STFT and CWT. Although ASST introduces additional 
computational complexity, its superior spectral concentration 
and discriminative feature extraction make it a promising 
option for advanced EEG analysis and diagnostic support in 
epilepsy. Future work may explore its application in real-time 
systems and broader clinical contexts.
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