
INTRODUCTION

Digital Health Technology Overview
In today’s rapidly and evolving technological landscape, 
digital health technologies (DHTs) stand out as symbols of 
innovation and transformation. These technologies cover a 
range of tools and applications such as mobile health (mHealth), 
health information technology (HIT), wearable devices, 
telehealth and telemedicine, and personalized medicine.[1,2] By 
leveraging computing platforms, connectivity, software, and 
sensors, DHTs are transforming the delivery and experience 
of healthcare services. DHTs are being used, ranging from 
promoting general well-being to acting as an integral 

component of medical devices. These technologies are not only 
utilized in clinical environments but also work in conjunction 
with multimodal medical products such as devices, drugs, 
and biologics. One of their most significant contributions is 
providing healthcare providers with comprehensive, data-
driven insights into patient health, while simultaneously 
empowering patients to take a more active role in managing 
their own care. The benefits of digital health are substantial, 
including improvements in medical outcomes and operational 
efficiencies. Enabled by these innovations, patients can make 
informed decisions about their health, and providers can 
facilitate early diagnosis and manage chronic conditions 
beyond traditional care settings.

ABSTRACT
In this research, we explore the statistical models that have contributed to determining the value of digital health technologies 
(DHTs) in global contexts and demonstrate their critical application using diverse datasets within the Indian context. We 
highlight the incorporation of several key healthcare analytical approaches, such as propensity score matching to evaluate 
treatment effects in cardiovascular research, structural equation modeling to examine psychosocial factors contributing to 
academic burnout among college students, and random survival forest classification methods for identifying genetic markers 
associated with breast cancer prognosis. We utilize a college-level social burnout survey and a comprehensive Kaggle dataset 
to show the application of these approaches. This is the first study of its kind to highlight both these datasets and key analytical 
methods, tools that are underutilized in India, while showing their practical relevance for guiding digital health investments 
and addressing healthcare challenges in the country. This study draws on several case studies with datasets to present a future 
perspective, where key statistical methodologies play a central role in improving healthcare productivity and promoting 
personalized care.
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In mid-2023, the digital therapeutics alliance (DTA), the 
leading international trade organization on digital therapeutics, 
and its partners outlined key categories of digital health. Their 
report outlines eight categories, including software used in 
health systems, tools outside traditional health settings, and 
patient-focused areas like care support, digital diagnostics, 
digital therapeutics, wellness, and remote monitoring. Each 
category highlights the diverse and integrated roles DHTs play 
in modern healthcare, significantly impacting providers and 
patients. As we delve deeper into the intricacies of DHTs, it 
becomes clear that these innovations are not merely shaping 
the future of healthcare but they are also actively redefining 
it, offering new paradigms for health management and care in 
the digital era.[3]

Advanced Statistical Method for DHT Evaluation
Furthermore, DHTs play a key role in enhancing healthcare 
effectiveness, expanding access, reducing costs, improving 
quality, and personalizing medical care. The FDA’s Center for 
Devices and Radiological Health (CDRH) is leading efforts to 
integrate medical devices with consumer-facing technologies, 
optimism about a future shaped by these innovations. To 
address complexities of this field, the FDA has focused on 
several priority areas, including software as a Medical Device 
(SaMD), Artificial Intelligence and Machine Learning (AI/
ML) in SaMD, cybersecurity.[4] This proactive approach 
ensures a balance between leveraging technological benefits 
and managing potential emerging risks.
Challenges of DHT Implementation
Despite its promise, DHT also introduces substantial 
challenges. These technologies handle highly sensitive 
personal data, making them susceptible to increasingly 
sophisticated cyber threats. Integrating DHTs with existing 
healthcare infrastructure (like hospital IT systems) often 
comprised of legacy systems, can be complex, and may lead to 
inefficiencies, errors, or data silos. Regulatory challenges also 
persist, as DHT-related products are governed by diverse laws 
and standards (e.g., HIPAA in the U.S. and GDPR in Europe), 
making compliance costly and resource-intensive, particularly 
for startups and smaller organizations. Furthermore, DHTs 
risk exacerbating health disparities, as not all populations have 
equitable access to digital tools or reliable internet connectivity. 
Traditional healthcare payment systems are often ill-suited to 
accommodate digital health solutions, potentially hindering 
their adoption. Without clear reimbursement pathways from 
insurance providers or public health systems, healthcare 
providers may hesitate to integrate new technologies into 
routine practice.[5]

Generating Value of DHT
DHTs are significantly reshaping healthcare by improving 
operational workflows, enhancing clinical outcomes, and 
elevating patient engagement.[6,7] For instance, electronic health 
records (EHRs) minimize administrative burdens, reduce the 
need for manual record-keeping, and decrease labor costs.[8, 9] 
Predictive analytics plays a crucial role in optimizing inventory 

and supply chain management by basing orders on real-time 
needs, resulting in cost-effective resource utilization.[10] 

In addition to reducing expenses, DHTs can also generate new 
revenue streams for healthcare providers through services such 
as personalized medicine, telemedicine, and lifestyle-focused 
wellness programs.[11]

Objective
​​This study presents and analyzes several advanced statistical 
models that contribute to the evaluation of DHTs in the Indian 
context. It examines how these models aid in quantifying and 
optimizing the impact of DHTs on healthcare delivery. Using 
a series of case studies, the article explores how statistical 
methodologies enhance healthcare efficiency and support 
patient-centered strategies. It discusses statistical techniques 
such as Propensity Score Matching (PSM), for analyzing 
treatment effects in cardiovascular research, Structural 
Equation Modeling (SEM) to investigate psychosocial 
determinants of academic burnout, and Random Survival 
Forest (RSF) for identifying genetic markers related to breast 
cancer prognosis. In addition, this research utilizes a rich 
Kaggle dataset to estimate COVID-19 fatality thresholds, 
demonstrating the practical utility of these models for public 
health decision-making. By showcasing these applications, the 
article advocates for the broader use of these robust statistical 
models in real-world healthcare scenarios, with a primary 
emphasis on the India context, highlighting their role in making 
healthcare more efficient, equitable, and informed by localized 
data through the lens of digital transformation.

ADVANCED STATISTICAL MODELING IN 
HEALTHCARE

Propensity Score Matching
Propensity score matching (PSM) assesses treatment effects 
in healthcare datasets by comparing matched samples to 
reduce selection bias. This commentary discusses methods 
to ascertain both relative and absolute treatment effects when 
employing propensity score matching within competing risk 
data frameworks. Relative treatment effects are determined 
using cause-specific hazard models in matched samples, 
while absolute effects are evaluated by comparing cumulative 
incidence functions (CIFs) between matched treated and 
control subjects.[12] The cause-specific hazard model for the kth 
event type allows one to estimate the association of covariates 
with the cause-specific hazard function for the kth event type 
as follows:

( ) ( )0 (CS CS
k kt t exp Xλ λ β= )

where ( )0
CS
k tλ  denotes the baseline cause-specific hazard function 

for the kth event type, and X denotes a vector of covariates and 
the subdistribution hazard function for event type k defined as:

λsd,k(t)= 
0t

lim
∆ →

 P(t<T≤t+ ∆  t, D=k|T>t ∪  (T<t ∩  K=k))
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where T be the time of the event; D be the event type (e.g., cause 
of death or failure type); k is the specific event of interest (e.g., 
death due to cardiovascular disease in a study with multiple 
causes of death); Δt be a very small time interval, approaching 
zero. P(t<T≤t+Δt, D=k) be the probability that an event of type 
k occurs within the small time interval (t,t+Δt]. 

PSM was applied to survival data with competing risks 
using the EFFECT dataset (10,063 myocardial infarction 
patients, 5-year follow-up). Monte Carlo simulations assessed 
empirical Type I error rates of various statistical methods 
comparing CIFs. Results promote the use of a marginal 
subdistribution hazard model tailored to accommodate within-
pair clustering of outcomes, enhancing the accuracy in testing 
CIF equality and estimating subdistribution hazard ratios. This 
approach bridges the gap between theoretical statistical models 
and practical applications in medical research, providing a 
robust framework for more precise treatment effect estimation 
in the presence of competing risks.[13]

Structural Equation Modeling
Stressors may affect the mental and physical health of college 
students, leading some of them to burnout syndrome. To 
evaluate this syndrome in syndrome in students at Arizona 
State University (ASU), a survey was conducted using a 
previously developed questionnaire, with ordinal variables. 
A theoretical structural equation modeling (SEM) was 
proposed, and the estimated model was obtained by applying 
the partial least squares (PLS) approach (Figure 1). Based 
on the PLS-SEM path coefficients, the latent construct 
“behavioral stress” directly affects “distress” and “insecurity” 
and indirectly affects both “quantitative demands” and  
“academic burnout”. 

SEM, particularly the PLS-SEM approach, has been applied 
effectively to explore the psychosocial factors contributing to 
academic burnout among ASU students.[14] This advanced 
statistical technique allows for the simultaneous modeling 
and analysis of relationships between observed and latent 
variables, capturing complex interactions within educational 
and psychosocial data. In the present study, SEM was used 
to investigate how latent variables like “behavioral stress”, 
“insecurity”, and “academic demands” contribute to burnout, 
utilizing data collected through a comprehensive survey. The 
findings highlight significant causal pathways, such as the 
impact of “distress” on “burnout”, and the model suggests that 
increased “insecurity” and “stress” are strongly associated 
with higher “burnout” levels among students. We can write the 
structural equations (from Figure 1) of the estimated model as:
Insecurity =  f (Behavioral stress); Distress = f (Behavioral 
stress) 
Quantitative demands = f (Insecurity) 
Academic burnout = f (Quantitative Demands, Distress)

We can write the structural equations (from Figure 1) of 
the estimated model as:

  0.548  ;Insecurity Behavioral stress=

   0.655  ;Distress Behavioral stress=

   0.625 ;Quantitativedemands Insecurity=

   0.360    0.498 .Academicburnout Quantitativedemands Distress= +

These insights are critical for developing targeted interventions 
aimed at reducing stress and improving well-being in academic 
settings, also demonstrating the practical applications of SEM 
in real-world psychological research.
Classification Methods: Random Forest and Regression 
Comparison
This study aims to identify key genes associated with mortality 
progression in breast cancer in patients by utilizing advanced 
analytical methods to rank influential predictive factors. 
Leveraging Logistic regression alongside various classification 
models such as random forest, support vector machine, linear 
discriminant analysis, and decision tree, the study found 
random forest to offer superior predictive accuracy. 

Specifically, the random survival forest (RSF) method 
was adapted for right-censored survival data, incorporating 
strategies like bootstrapped data growth, random feature 
selection, and deep tree growth. The RSF method employs a 
unique log-rank splitting approach to enhance the precision of 
gene selection, utilizing the Nelson-Aalen cumulative hazard 
estimator expressed as
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Aalen estimator); Yi,j is the individuals who are at risk (alive) 
or who had an event (death), and di,j is the number of events at 
time ti in daughter node j, where j ∈ {1, 2}. 

The data for this analysis was sourced from the NKI breast 
cancer dataset,[16] comprising 272 patients characterized 
by 1554 gene attributes, 10 clinical attributes, and 3 
general attributes, highlighting significant variables such as 
chemo, hormonal treatments, and gene expressions. This 
comprehensive approach underscores the potential of 
integrating complex statistical methods in medical research to 
enhance predictive accuracies in breast cancer prognosis.[17] 

Figure 1: Partial least squares-structural equation modeling estimates, 
obtained with SmartPLS 3.0 software[15].
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Two different survival splitting rules have been implemented 
by using separate RSF methods and by constructing the rank 
of risk factors, such as chemo and hormonal treatments, due 
to breast cancer.
Survival Analysis with Competing Risk
This work explores COVID-19 mortality risk factors using 
advanced survival analysis techniques that account for 
competing risks, a significant improvement over traditional 
methods like the Kaplan-Meier and Cox proportional hazards 
models. We employ the subdistribution hazard model, which 
is particularly suited for datasets with competing risks. The 
model is represented by the equation

( ) ( )1 1;0 1( | ) Tt x t exp xγ γ η=

where 1( | )t xγ  denotes the subdistribution hazard for the event 
of interest depending on the vector of covariates x, ( )1;0 tγ  is 
the baseline subdistribution hazard for an individual with all 
covariates equalling zero, and 1η  is the vector of regression 
coefficients. 

Analyzing COVID-19 data from Kaggle, which includes 
66,000 records with demographic and disease-specific 
variables, our findings provide a detailed profile of mortality 
risks based on a dataset with considerable completeness (53.6k 
valid entries) and some missing data (18.0k). This research 
underscores the enhanced predictive power and accuracy 
of survival models in public health studies, particularly in 
understanding pandemics like COVID-19 under different 
scenarios. It also illustrates the differential impact of COVID-
19 based on gender and age.[18]

Model Validation and Taxonomy of Survival Analysis
This work demonstrates the robust integration and validation 
of advanced statistical models such as PSM, SEM, and RSF, 
highlighting their versatility across various medical fields, 
including cardiology, oncology, and psychological health. 
PSM was validated through Monte Carlo simulations in the 
EFFECT Study, confirming its effectiveness in handling 
competing risks and improving accuracy in cardiovascular 

treatment assessments. SEM was successfully applied to 
analyze psychosocial factors influencing academic burnout 
at Arizona State University, showing significant correlations 
that facilitate targeted interventions for improving student 
well-being.[14] Meanwhile, RSF proved superior in identifying 
genetic markers for breast cancer prognosis, outperforming 
traditional methods with its precision in handling right-
censored data, which underscores its reliability and clinical 
applicability. 

The taxonomy (from Figure 2) of survival analysis provides 
a structured classification of statistical methods that analyze 
time until an event of interest occurs.[17] It encompasses the 
analysis by identifying the role of explanatory variables 
(covariates), characterizing the type of time-to-event data 
(survival data), addressing the presence of alternative events 
that could interfere with the event of interest (competing 
risks), and extending survival predictions beyond the observed 
data (extrapolation) and each category encompasses specific 
methods tailored to handle different aspects of survival 
analysis[18] This structured framework systematically ensures 
comprehensive, diverse methodologies and precise application 
of survival studies.

DISCUSSION
Selected Approaches in Healthcare
Advanced analytical methods applied in real-world healthcare 
scenarios highlight the transformative potential of statistical 
models in enhancing medical outcomes and operational 
efficiency.[19] For instance, the application of these models in 
analyzing COVID-19 mortality risk factors using a Kaggle 
dataset provided detailed insights into pandemic management, 
demonstrating the models’ adaptability and precision in public 
health crises.[20] Furthermore, the incorporation of these 
models supports healthcare professionals and researchers 
in making informed decisions, facilitating early detection 
of diseases, managing chronic conditions more effectively, 
and tailoring treatments to individual patient needs.[21] 
The proactive approach of integrating technologies such 
as Software as a Medical Device (SaMD) and Artificial 

Figure 2: Taxonomy of Survival Analysis.
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Intelligence further illustrates the forward-thinking strategies 
necessary to harness technological benefits while managing 
potential risks effectively.[10,22]

Key Statistical Methods for Evaluating DHT
Overall, the validation and discussion around these models 
emphasize their indispensable role in not only advancing 
medical research but also crafting a responsive and efficient 
healthcare system capable of addressing both current and 
emerging health challenges.[23-25] This synthesis of technology 
and methodology heralds a new era of digital health where 
innovation meets practical application, ultimately redefining 
healthcare delivery and patient care in the digital age.[26] 

Future research should expand the use of advanced statistical 
models like Propensity Score Matching, Structural Equation 
Modeling, and Random Survival Forest across various medical 
fields, integrating these with emerging technologies such as 
blockchain and AI for enhanced data management and real-
time analysis. Efforts should focus on leveraging these models 
for predictive analytics in public health, enhancing treatment 
personalization, and developing ethical frameworks for AI 
applications. Collaborations across disciplines will be crucial 
to maximize the potential of digital health technologies, 
ensuring a comprehensive approach to improving healthcare 
outcomes and operational efficiency.[27]

Additionally, longitudinal studies will help assess the 
long-term impact of these innovations, supporting continuous 
improvement in healthcare delivery.
Value  Assessment of DHT
The above key statistical methods can generate significant 
value for DHTs by enhancing the analysis, interpretation, and 
utilization of these technologies’ vast and complex data. They 
can enhance predictive analytics by enabling early detection of 
diseases and facilitating personalized medicine. These models 
can handle complex and high-dimensional data simultaneously 
and also enhance decision support systems by improving 
accuracy and reducing uncertainty. Models can help optimize 
DHTs interventions such as telemedicine, mobile health apps, 
and remote patient monitoring through adaptive interventions 
and cost-effectiveness analysis.[1,11] Advanced algorithms can 
analyze real-time health data streams, offering instant feedback 
through techniques such as dynamic risk assessment and 
anomaly detection. By leveraging advanced statistical models, 
large-scale health data can be used to identify population-level 
health trends, predict disease outbreaks, and inform the design 
of effective public health interventions.[28-32]

Evaluating DHTs requires a comprehensive value framework 
that goes beyond traditional clinical and economic assessments 
to include humanistic, ethical, societal, and system-level 
dimensions unique to digital innovations.[33,34] While aligned 
with conventional evaluation approaches, the clinical value 
of DHTs includes improved health outcomes, early diagnosis, 
prevention, treatment adherence, and reduced complications, 
supported by data from randomized controlled trials (RCTs), 
electronic health records (EHRs), mobile app logs, and patient-
reported outcomes.[35] Similarly, economic value is assessed 

through cost-effectiveness, quality-adjusted life years (QALYs), 
and budget impact analyses, using data on intervention costs, 
healthcare utilization, and productivity metrics.[36]

Beyond clinical and economic impact, DHTs bring 
added value through their contributions to extended human 
experience, ethics, and social equity. Humanistic value 
emphasizes user satisfaction, digital empowerment, usability, 
and quality of life, elements often captured through surveys, 
focus groups, and engagement metrics from apps and wearable 
devices.[37,38] Ethical and societal considerations such as 
equity in access, digital inclusion, data privacy, and cultural 
acceptability are critical to DHTs adoption and can be evaluated 
through demographic analyses, equity audits, and subgroup 
impact studies.[39,40] Furthermore, DHT-specific factors like 
implementation readiness, interoperability, and integration into 
existing health systems must be assessed through system audits, 
provider feedback, and reviews of digital infrastructure.[41,42]

The estimation of DHTs value depends on integrating 
diverse data sources through structured methodologies such 
as health technology assessment (HTA), multi-criteria decision 
analysis (MCDA), and simulation models.[43,44] Stakeholder 
preferences captured through tools like discrete choice 
experiments or Delphi panels can also add context-specific 
weight to each value element. Relevant national and global 
datasets play a critical role, including the National Family 
Health Survey (NFHS),[45] Health Management Information 
System (HMIS),[46] Ayushman Bharat Digital Mission 
(ABDM),[47] and Demographic and Health Surveys (DHS). 
International sources like the Global Burden of Disease 
(GBD),[48] WHO ICTRP, and GDHI also provide useful 
benchmarking. Platforms such as DHIS2[49] and OpenMRS,[50] 
widely adopted in low and middle-income countries (including 
parts of India), offer real-world evidence from public health 
programs.[51] Supplementary sources like Google Mobility 
Reports[52] and ITU connectivity indicators[53] support 
analysis of behavioral trends and infrastructure readiness. 
Aligning DHTs evaluations with such multidimensional value 
frameworks and high-quality datasets ensures informed, 
equitable, and scalable decision-making in digital health 
adoption.
Limitations of These Statistical Methods
The efficiency of statistical models is highly reliant on 
the quality and integrity of the data. In this context, gaps, 
inconsistencies, and the lack of standardization in data 
collection can significantly limit the accuracy of predictions 
produced by the models. The findings deliberated may not be 
generalizable outside the particular situation or populations 
studied. For instance, models developed and validated in 
urban hospital settings may perform poorly in rural or less 
technologically advanced areas. Advanced statistical models 
can also be complex to implement correctly. Additionally, 
integrating new DHTs solutions with existing healthcare 
infrastructures poses significant challenges, as incompatibility 
between new and older systems can lead to errors and 
inefficiencies.[54,55]
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Future Work
Future work could focus on developing more robust methods 
for data collection and management to ensure that the 
datasets used are comprehensive, accurate, and reflective of 
diverse populations. Future research can focus on bridging 
the gap between emerging digital health technologies and 
existing traditional systems by developing standardized 
software and promoting integration mechanisms that enhance 
interoperability. Further studies are required to address 
ethical dilemmas and regulatory complexities related to DHT, 
ensuring patient privacy and data protection.[11] Exploring the 
application of innovative technologies such as the Internet 
of Things (IoT), blockchain, and artificial intelligence could 
provide novel routes to optimize healthcare delivery. Moreover, 
conducting comprehensive assessments of the long-term and 
implications of these technologies can provide critical insights 
into their sustained effectiveness and scalability.
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