
INTRODUCTION
The quest to unravel the mysteries of the brain’s inner 
workings traces its origins back to Santiago Ramon y Cajal’s 
groundbreaking publication in 1894.1 Born in Navarra, Spain, 
in 1852, Cajal possessed exceptional artistic talent and chose to 
embark on a journey into the field of medicine, guided by his 
father’s expertise. By 1883, Cajal had risen to the position of a 
professor of anatomy at the University of Valencia, publishing 
works on microanatomy, with a particular focus on the intricate 
nervous system. Collaboration with Camillo Golgi earned them 
the Nobel Prize in Physiology or Medicine in 1906.

Cajal’s intricate illustrations, combined with the emergence 
of electrophysiology, a branch of physiology dedicated to 
exploring the electrical properties of biological cells and 
tissues, laid the groundwork for the development of various 
models. These models aimed to elucidate how individual 
neurons respond to stimuli and how neural networks have the 
capacity to learn. These early endeavors mark the inception of 
ANN. It is imperative to acknowledge, however, that despite 

the impressive computational power achieved by contemporary 
ANN models, they still pale in comparison to the immense 
complexity of the human brain.

ANNs are computational models inspired by the structure 
and function of the human brain. They consist of interconnected 
nodes, called neurons, organized in layers.   Neurons are the 
fundamental building blocks of natural neural networks 
(NNN). Neurons come in various types, but the archetypal 
neuron is a specialized cell designed to process and transmit 
information. The neuron comprises three primary parts: 
Dendrites, Soma, and Axon, as shown in Fig. 1.

Dendrites serve as inputs, collecting information 
from external receptors or other neurons in the form of 
neurotransmitters. These neurotransmitters are small 
molecules that carry information and are stored in vesicles 
within the presynaptic cell’s synaptic button. When a 
neurotransmitter is released from the presynaptic button, 
it crosses the synaptic cleft and binds to neurotransmitter 
receptors in the postsynaptic cell. This interaction can either 
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Fig. 1: Prototypical neural cell, comprised of: Dendrites, soma, and 
axon

excite (positive) or inhibit (negative) the postsynaptic cell, 
generating a partial response termed irritability. Notably, a 
single synapse’s irritability alone is insufficient to trigger a full 
response in the receiving cell. Instead, it is the cumulative effect 
of tens to thousands of synapses, encompassing both excitatory 
and inhibitory signals, that is integrated in the neuron’s soma.

If the combined inf luence of positive and negative 
signals from the presynaptic cells surpasses a threshold, the 
postsynaptic cell generates an electrical response known as an 
action potential (AP). This AP travels along the axon, branching 
into multiple terminals through a treelike structure called the 
telodendria. Each telodendron terminates in a synaptic button 
containing stored neurotransmitters. When the AP reaches the 
synaptic button, neurotransmitter is released into the synaptic 
cleft, where it is received by the postsynaptic cell.
Artificial Neural Networks (ANN)
The origins of ANNs can be traced back to the early 1940s, 
marked by the collaboration between Warren McCulloch, 
an American neurophysiologist and cybernetician at the 
University of Illinois at Chicago, and Walter Pitts, a self-taught 
logician and cognitive psychologist. Their groundbreaking 
work introduced the concept of the “McCulloch-Pitts neuron.2” 
This pioneering endeavor gave birth to the first mathematical 
model of a neural network. 

In 1949, Canadian psychologist Donald O’Hebb introduced 
a seminal concept in the field of neural learning, proposing 
a fundamental hypothesis for biological neurons that would 
become widely recognized as Hebbian theory.3 Hebb’s theory 
posited that neural connections between neurons strengthen 
with activity. This principle can be summarized as “Neurons 
that fire together wire together,” emphasizing the role of 
repeated and persistent neural activity in shaping the brain’s 
connectivity. This concept is commonly referred to as Hebbian 
Learning and has played a significant role in the development 
of artificial neural networks and neurobiology.

In 1958, a significant milestone in the field of artificial 
neural networks was achieved with the development of the 
perceptron by Frank Rosenblatt, an American psychologist 
often referred to as the father of deep learning. The original 
perceptron was created as an electronic device and was initially 
simulated on an IBM 704 computer at Cornell Aeronautical 
Laboratory.4

Rosenblatt’s groundbreaking work on perceptron’s laid a strong 
foundation for subsequent developments in neural network 
theory, and its principles continue to exert a significant influence 
in the field of deep learning.5 Remarkably, the perceptron, as 
shown in Fig. 2, with relatively minor modifications, remains 
at the core of modern ANNs. The perceptron operates on a 
relatively straightforward principle: it takes input signals and 
multiplies them by corresponding weights, which represent 
the strengths of synaptic connections. These weighted inputs 
are then aggregated, usually through addition, and the result 
is compared to a predefined threshold within the activation 
function. When this aggregated value surpasses the threshold, 
it triggers an activation signal, typically represented as a Digital 
1. This fundamental concept of signal processing and decision-
making within a neural network has endured and evolved into 
the complex and powerful deep learning models that underpin 
many of today’s Artificial Intelligence (AI) applications.

Like natural neurons, a single perceptron possesses limited 
computational utility. Perceptron’s are interconnected to form 
layers, with data typically flowing from left to right, As shown 
in the Fig. 3. The leftmost layer represents the input layer, where 
each neuron corresponds to the data to be analyzed, such as 
text or medical images. One or more hidden layers, where most 
of the ANN’s processing capability resides, can exist. On the 
far right is the output layer, which typically represents desired 
outcomes, like identifying whether an image features a human 
or an animal or determining the language of a document. 
Present-day deep learning systems may comprise thousands 
of hidden layers, each containing numerous neurons.
Training Artificial Neural Networks
The process of training artificial neural networks is a 
fundamental concept in machine learning that involves refining 
and optimizing the network’s parameters to perform a specific 
task effectively. One crucial milestone in the development of 
training methods for neural networks was the introduction 
of backpropagation of errors, which was pioneered by Paul 
Werbos, an American social scientist and machine learning 
innovator, in his 1974 dissertation.6

Backpropagation can be likened to solving inverse 
problems. It works by iteratively adjusting the network’s 
internal parameters, such as weights and biases, based on the 
discrepancies, or errors, between the network’s predictions and 
the desired or target outputs. The goal is to minimize these 

Fig. 2: The perceptron processes input signals and activates if the sum 
exceeds a threshold.
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errors, effectively training the network to make more accurate 
predictions over time.

For example, in a supervised learning scenario where the 
objective is to train an artificial neural network to distinguish 
between human and non-human images, a training set of 
labeled images is used. This training set comprises images 
that have been previously evaluated by human experts to 
determine whether each image depicts a human (positive 
class) or a non-human (negative class). To ensure effective 
training, it is essential to have a balanced training set, 
which includes an equal number of human and non-human 
images. The backpropagation algorithm then adjusts the 
network’s parameters during training to reduce the errors in 
its predictions, gradually improving its ability to correctly 
classify new, unseen images. The objective is to determine 
the precise weight required for each connection to confidently 
classify human images. 

Once the network is initialized, training data is passed 
through the model from input to predicted output in a 
feedforward step. Initially, the network’s accuracy is low. 
Accuracy is typically assessed by computing the squared 
difference between predictions and targets. Backpropagation 
is responsible for calculating the error (loss function) 
concerning the network’s weights for each input-output 
example. Derivatives of the error are found, and weights are 
adjusted based on these derivatives, gradually approaching 
the configuration that minimizes error. This iterative process 
is known as “backpropagation.” After multiple iterations, the 
network becomes potentially trained and can be tested.

Testing involves using a new set of images, not part of 
the training data but meeting the same criteria. The system’s 
accuracy is evaluated, and if it meets expectations, it is 
considered “trained” and can be applied to real data. If it falls 
short of expectations, additional training is required, possibly 
involving an expanded testing dataset. The advantage is that 
subsequent training does not begin with random weights, 
making convergence faster. Once an ANN is trained for a 
specific task, it can only perform that task and requires new 
training for different functions, such as distinguishing dogs 

from cats using a similar architecture but distinct training data.
Remarkably, the backpropagation algorithm used in 

training ANNs relies on the chain rule, a fundamental concept 
in calculus that was first formulated by the renowned German 
mathematician, philosopher, scientist, and diplomat Gottfried 
Wilhelm Leibniz in 1673. Leibniz is often referred to as “The 
Last Universal Genius” due to his significant contributions to 
various fields of knowledge.

The chain rule, as formulated by Leibniz, states that if y is 
a differentiable function of u, and u is a differentiable function 
of x, then y is a differentiable function of x, and the derivative 
of y with respect to x can be calculated as:

This rule is a fundamental tool in calculus for finding the 
derivatives of composite functions, and it plays a crucial role 
in various branches of mathematics and science, including 
calculus, physics, and machine learning.

The utilization of the chain rule in backpropagation 
allows neural networks to efficiently compute gradients, 
which are essential for adjusting the network’s parameters 
during training. By propagating errors backward through the 
network and applying the chain rule, backpropagation enables 
the network to learn and improve its performance over time, 
making it a foundational technique in the field of ANN and 
deep learning.

Genetic Algorithms
GAs are inspired by the process of natural selection and 
genetics, introduced by John Holland in the 1970s.7 In the 
context of GAs, we begin with a population, which consists 
of a set of potential solutions to a given optimization 
problem. Each solution within this population is represented 
as a chromosome, which can be encoded as a string of bits, 
numbers, or characters, depending on the specific problem 
being addressed.

A chromosome is further divided into genes, each 
representing a particular variable or attribute of the solution. 
The overall quality or performance of these solutions is 
evaluated using a fitness function. This function assigns a 
fitness score to each individual based on how well it solves the 
problem at hand, in the same way that accuracy determines 
the efficacy of back propagation.

The selection process is critical as it determines which 
individuals are chosen to reproduce and pass their genetic 
material to the next generation. This selection is typically 
biased towards individuals with higher fitness scores, akin to 
selecting the best candidates for breeding in natural evolution.

Following selection, crossover (or recombination) is 
employed to combine the genetic information of two parents to 
produce new offspring. This genetic operator mimics biological 
reproduction, creating new solutions that inherit traits from 
both parents, thus fostering genetic diversity and innovation 
within the population.
To ensure the population does not converge prematurely 

Fig. 3: Artificial Neural Network consists of an input layer that receives 
data, hidden layers that process and output layer that produces the result
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to suboptimal solutions, a mutation operator is introduced. 
Mutation involves making random alterations to some genes 
in the chromosomes, thereby maintaining genetic diversity and 
enabling the exploration of new areas in the solution space.

The Genetic Algorithm operates through an iterative 
process, beginning with the initialization phase. During 
this phase, an initial population of potential solutions is 
generated randomly, establishing a diverse foundation for 
the evolutionary process.

In the subsequent evaluation step, each individual in 
the population is assessed using the fitness function. This 
evaluation determines the fitness score of each solution, 
providing a basis for comparison and selection.

The selection phase follows, wherein individuals are 
chosen based on their fitness scores to serve as parents for 
the next generation. The selection process is designed to favor 
individuals with higher fitness, ensuring that advantageous 
traits are propagated.

Next, the crossover operator is applied. This step involves 
combining pairs of selected parents to produce new offspring, 
thereby introducing new combinations of genetic material 
into the population. Crossover promotes the exchange of 
beneficial traits and enhances the overall adaptability of the 
population.

To prevent genetic stagnation and encourage exploration 
of the solution space, the mutation operator is employed. 
Mutation introduces random changes to some genes in the 
offspring, ensuring genetic diversity is maintained and novel 
solutions are explored.

After generating the new offspring, the replacement 
phase takes place. During this phase, the new population is 
formed by replacing some or all of the old individuals with 
the newly created ones. This iterative cycle of evaluation, 
selection, crossover, mutation, and replacement continues 
until a predetermined stopping criterion is met, such as 
achieving a satisfactory solution or reaching a maximum 
number of generations.

Through this evolutionary process, the Genetic Algorithm 
incrementally refines the population of solutions, progressively 
converging towards an optimal or near-optimal solution to the 
problem. The principles of natural selection, recombination, 
and mutation are thus harnessed to explore and exploit the 
solution space effectively.

While there are multiple instances of research exploring 
the combination of genetic algorithms and neural networks,8 
particularly in areas like neural network architecture 
optimization,9 direct application of genetic algorithms to train 
the weights of a neural network is not common and for a very 
long time has been assumed not to be an efficient approach.10

The primary reason for this is the complexity of the neural 
network weight space. Genetic algorithms, while effective 
in discrete search spaces, struggle to efficiently explore the 
continuous, high-dimensional space of neural network weights. 
Backpropagation, on the other hand, is specifically designed 
for this task.8,10

Purpose
High performance computing and computation as a service has 
made available immense amounts of computational capacity 
that had previously been missing. The goal of this project is 
to investigate the difference of two optimization approaches, 
(backpropagation and genetic algorithms) in terms of 
performance and running time on various traditional artificial 
neural networks. For this purpose, we trained traditional neural 
networks with genetic algorithms and backpropagation for 
classification and regression on simulated datasets and publicly 
available datasets. For implementation of these experiments, 
we used google Collab which empowered with various Gen AI 
tools such as Collab AI and Gemini. Using these tools helps 
us to do more experiments in faster time.
Methods
We investigate the effects of backpropagation vs genetic 
algorithms for fine tuning traditional neural networks. Three 
different experiments were performed, in the first we generated 
sample data from simple differentiable mathematical functions. 
For the second and third experiments, we used publicly 
available datasets with some level of noise, to compare efficacy 
of training and convergence. 
Simple Mathematical Function
For the first experiment we trained a simple one-layer neural 
network with sigmoid activation function, to solve a two 
variable mathematical function. This function is  
and we generated 1000 data points. We used 80% of the data 
for training the models and 20% for testing. The code for 
generating the data is shown in Fig. 1. The code for training 
neural network with genetic algorithm is shown in Fig. 4 and 
the code for training neural network with backpropagation is 
shown in Fig. 5 and with genetic algorithms in Fig. 6. In this 
example we choose not to use any deep learning packages 
and use only python math library, so the comparison of both 
approaches could be fair. 
Experiment on Diabetes Dataset
The second experiment that we conducted was with the 
public diabetes dataset for Machine learning. The dataset 
has 10 features and one numeric output. Total number of 
observations in this dataset is 442 and we partitioned into train 
and testing data. The training size was 80% of the data. The 
full description of the dataset and the meaning of its features is 
documented in the sklearn documentation ( https://scikit-learn.
org/stable/datasets/toy_dataset.html).

Fig. 4: Code used to generate the Sample Data for the Simple 
Mathematical Function
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Code Description

For training neural network model with 
backpropagation, we only instantiate one neural 
network and update the weight of the network while 
passing through the data and correcting the weights 
so that the network output be close to the real outputs.

Figure 5: Code used to train the Simple Mathematical Function Artificial Neural Network with Backpropagation

Code Description
This code creates a class for Neural Networks with sigmoid acti-
vation function. The fitness function calculates the squared error 
for each observation in the training/testing dataset and returns 
the total error. By setting the Neural Networks as a class we can 
instantiate many objects from the class and train them indepen-
dently. This network is quite simple with only two inputs and a 
bias term.

The genetic algorithm function trains the neural network by in-
stantiating the number of individual neural networks in the popu-
lation Neural Network(). It then applies the fitness function to 
each instance and calculates the total error. Finally, it sorts the 
instances by fitness values and picks the first 50% (we can change 
this for different experiments). During the training, it crosses over 
the network weight based on the value of a random number and 
mutates randomly with a little gaussian noise. Most of the code 
was generated by google collab AI with user optimization for the 
specific purpose.

Fig. 6: Training Simple Mathematical Function Neural Network with Genetic Algorithms
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Table 1: Result of training simple mathematical function neural network with backpropagation

Experiment Learning Rate Number of Epochs Train MSE Test MSE Training Time (Seconds)

1 0.1 10 0.058 .051 0.021

2 0.3 20 0.086 0.079 0.037

3 0.05 50 0.076 0.068 0.083

4 0.1 100 0.094 0.085 0.3

5 0.05 2000 0.1 0.093 3.4

Table 2: Result of training simple mathematical function neural network with genetic algorithms

Experiment Parameters
(population size, mutation rate, crossover rate, generations) Train MSE Test MSE Training Time (Seconds)

1 (100,0.1,0.7,10) 0.133 0.126 1.27

2 (100,0.05,0.8,20) 0.13 0.122 2.38

3 (100,0.05,0.8,30) 0.1347 0.1262 4.89

4 (100,0.05,0.8,100) 0.1334 0.1264 12.8

5 (50,0.2,0.5,10) 0.1342 0.1258 0.67

6 (10,0.2,0.5,10) 0.1389 0.1285 0.13

7 (10,0.2,0.5,20) 0.14 0.1329 0.24

8 (10,0.5,0.5,5) 0.1555 0.1487 0.07

9 (10,0.01,0.5,5) 0.1449 0.137 0.067

10 (10,0.01,0.5,50) 0.1286 0.1198 0.61

We build a neural network to train with the diabetes dataset. 
The neural network has a hidden layer with 10 neurons and 
sigmoid activation functions and a final linear layer for the 
regression. We trained the neural networks with the Keras 
library for backpropagation and for training with the genetic 
algorithms, we implemented the same algorithm presented 
in Fig. 6. 
Experiment with iris dataset
The third experiment was conducted for multi-class 
classification. The iris dataset was utilized to conduct this 
experiment. The iris dataset is a small dataset with 150 
observations. There are 4 features in this dataset and one 
multi-class output. For more detail about this dataset please 
visit:  https://archive.ics.uci.edu/dataset/53/iris.

RESULTS
We ran 10 experiments with different parameters for the Simple 
Mathematical Function, until a small Mean Square Error (MSE) 
was reached. The results of training with backpropagation is 
summarized in Table 1, while the results for the same network 
with genetic algorithms are presented in Table 2.

For the diabetes dataset, the results of the training of the 
neural network with backpropagation are shown in Table 3, 
while the results of training the same neural network with 
genetic algorithms are shown in Table 4.
Results for the Iris dataset documented in Tables 5 and 6.  

DISCUSSION
On the two variable differentiable mathematical function, 
backpropagation performed significantly better than genetic 
algorithms in both error, and training time. For the Diabetes 
Dataset, we tested the model performance with different 
settings and even limiting the number of generations to 1000 
the model performance was above 5000 in MSE test. For 
Diabetes Dataset experiments show that the genetic algorithm 
can reach convergence fast (Table 3 vs Table 4); however, 
more search is needed to fully evaluate the accuracy for real 
data. For the Iris dataset genetic algorithm outperformed 
backpropagation both from the accuracy and training time 
perspective. 

Up to this point it has been assumed that genetic algorithms 
require more computational power than backpropagation and 
that the larger the size of the neural network, the worse this 
problem becomes. The general assumption is that genetic 
algorithm memory usage that for large networks might be 
considerable because it needs to instantiate a large population 
of similar networks in contrast to backpropagation that only 
needs one instance of neural network.  

However, with the backpropagation we not only need 
to understand the model architecture, but we also need to 
understand the derivative across different network nodes. The 
larger the size of the network the more time it takes for the 
network to converge. Genetic algorithms, in the other hand, are 
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Table 3: Result of training diabetes dataset neural network with back propagation

Experiment Learning Rate Number of Epochs Train MSE Test MSE Training Time (Seconds)
1 0.05 20 16371 17271 10.72
2 0.05 100 6300 5823 49.83
3 0.1 50 31117 33597 41.31
4 0.01 200 6576 5505 103
5 0.001 300 2619 2751 202

Table 4: Result of training diabetes dataset neural network with genetic algorithms

Experiment Parameters
(population size, mutation rate, crossover rate, generations) Train MSE Test MSE Training Time (Seconds)

1 (10,0.1,0.5,10) 28035 24972 0.34

2 (100,0.1,0.5,50) 11738 9825 2.08

3 (100,0.05,0.5,100) 21907 19189 3.83

4 (100,0.05,0.5,500) 45664 41781 21.46

5 (200,0.1,0.5,100) 6076 5361 9.07

6 (200,0.2,0.5,500) 6102 5301 202

Table 5: Result of training iris dataset neural network with backpropagation

Experiment Learning Rate Number of Epochs Train Accuracy Test Accuracy Training Time (Seconds)

1 0.05 20 67 63 2.3

2 0.05 100 67 63 4.5

3 0.1 50 79 76 4.4

4 0.01 1000 94.1 93.3 41

5 0.02 5000 98.4 100 203

Table 6: Result of training iris dataset neural network with genetic algorithms

Experiment Parameters
(population size, mutation rate, crossover rate, generations) Train Accuracy Test Accuracy Training Time (Seconds)

1 (10,0.1,0.5,10) 65 70 0.08

2 (100,0.1,0.5,50) 66 70 3

3 (100,0.05,0.5,100) 65 70 6

4 (100,0.05,0.5,500) 32 36 18

5 (100,0.1,0.5,1000) 97.5 96.6 37.7

6 (200,0.01,0.5,2000) 98.5 100 138

architecture independent and the iterative process is identical, 
independent of the size of the network.

CONCLUSION
The effects of optimization approaches on neural network 
training were investigated, in terms of model test accuracy 
and training time. The article compared genetic algorithms 
with the traditional backpropagation methodology. Genetic 
algorithms can be implemented for any model architecture. 
In terms of accuracy and training time, our experiments show 
that genetic algorithms can provide good convergence, even 
faster than backpropagation.

There is not enough information to conclude that genetic 
algorithms can outperform backpropagation or vice versa. 
The choice genetic algorithms vs backpropagation depends 
on the complexity of the problem. If the network is complex 
and obtaining derivation formula is not straightforward, we do 
think genetic algorithms are a proper alternative and further 
research would be needed to validate this approach. 

REFERENCES
1.	 Cajal SR. Texture of the Nervous System of Man and the 

Vertebrates. Wien: Springer-Verlag; 1999.
2.	 McCulloch WS, Pitts W. A logical calculus of the ideas immanent 



Backpropagation vs Genetic Algorithms in Neural Network Training

IJHTI, Volume3 Issue 3, September – December, 2024 Page 25

in nervous activity. Bull Math Biophys. 1943;5:115–33.
3.	 Hebb D. The Organization of Behavior: A Neuropsychological 

Theory. New ed. Psychology Press; 2002.
4.	 Rosenblatt F. Cornell Aeronautical Laboratory. Report no. 

VG-1196-G-8; 1962.
5.	 Rosenblatt F. Principles of Neurodynamics: Perceptrons and the 

Theory of Brain Mechanisms. Spartan Books; 1962.
6.	 Werbos P. The Roots of Backpropagation: From Ordered 

Derivatives to Neural Networks and Political Forecasting. New 

York: John Wiley & Sons; 1994.
7.	 Holland J. Adaptation in Natural and Artificial Systems. 

University of Michigan Press; 1975.
8.	 Yao X. Evolving artif icial neural networks. Proc IEEE. 

1999;87(9):1423–47.
9.	 Stanley KM, Miikkulainen R. Evolving neural networks through 

augmenting topologies. Evol Comput. 2002;10(2):99–127.
10.	 Whitley D, Starkweather T, Bogart C. Genetic algorithms and 

neural networks: optimizing connections and connectivity. 
Parallel Comput. 1990;14(3):347–61.


