
INTRODUCTION
The quest to unravel the mysteries of the brain’s inner
workings traces its origins back to Santiago Ramon y Cajal’s
groundbreaking publication in 1894.1 Born in Navarra, Spain,
in 1852, Cajal possessed exceptional artistic talent and chose to
embark on a journey into the field of medicine, guided by his
father’s expertise. By 1883, Cajal had risen to the position of a
professor of anatomy at the University of Valencia, publishing
works on microanatomy, with a particular focus on the intricate
nervous system. Collaboration with Camillo Golgi earned them
the Nobel Prize in Physiology or Medicine in 1906.

Cajal’s intricate illustrations, combined with the emergence
of electrophysiology, a branch of physiology dedicated to
exploring the electrical properties of biological cells and
tissues, laid the groundwork for the development of various
models. These models aimed to elucidate how individual
neurons respond to stimuli and how neural networks have the
capacity to learn. These early endeavors mark the inception of
ANN. It is imperative to acknowledge, however, that despite

the impressive computational power achieved by contemporary
ANN models, they still pale in comparison to the immense
complexity of the human brain.

ANNs are computational models inspired by the structure
and function of the human brain. They consist of interconnected
nodes, called neurons, organized in layers. Neurons are the
fundamental building blocks of natural neural networks
(NNN). Neurons come in various types, but the archetypal
neuron is a specialized cell designed to process and transmit
information. The neuron comprises three primary parts:
Dendrites, Soma, and Axon, as shown in Fig. 1.

Dendrites serve as inputs, collecting information
from external receptors or other neurons in the form of
neurotransmitters. These neurotransmitters are small
molecules that carry information and are stored in vesicles
within the presynaptic cell’s synaptic button. When a
neurotransmitter is released from the presynaptic button,
it crosses the synaptic cleft and binds to neurotransmitter
receptors in the postsynaptic cell. This interaction can either

ABSTRACT
The exploration of artificial neural networks (ANNs) has seen significant advancements, yet the optimal approach for training
these networks remains a topic of debate. This study investigates the efficacy and computational efficiency of two prominent
optimization techniques, backpropagation and genetic algorithms (GAs), in training traditional neural networks. The research
conducted three experiments: the first involved training a single-layer neural network using a simple mathematical function; the
second utilized the diabetes dataset for regression analysis; and the third applied the iris dataset for multi-class classification.
The networks were trained using Google Colab, leveraging generative AI tools to expedite the experimentation process. Results
indicate that backpropagation consistently achieved lower mean square error (MSE) in shorter training times compared to
GAs, especially in high-dimensional data. GAs demonstrated robustness in escaping local minima, making them suitable for
complex, noisy datasets where backpropagation might converge prematurely. The study concludes that while backpropagation
is preferable for tasks requiring precision and speed, genetic algorithms offer valuable advantages in explorative scenarios,
highlighting the importance of task-specific algorithm selection in neural network training.
Keywords: Artificial neural networks, Backpropagation, Genetic algorithms, Supervised learning, Optimization techniques.
International Journal of Health Technology and Innovation (2024)
How to cite this article: Hazrati A, Kariuki S, Silva R. Comparative Analysis of Backpropagation and Genetic Algorithms
in Neural Network Training. International Journal of Health Technology and Innovation. 2024;3(3):18-25.
Doi: 10.60142/ijhti.v3i03.04
Source of support: Nil.
Conflict of interest: None

Comparative Analysis of Backpropagation and Genetic
Algorithms in Neural Network Training

Ayoub Hazrati, Shannon Kariuki, Ricardo Silva*

Department of Computer Science, Villanova University, United States

Received: 08th August, 2024; Revised: 24th September, 2024; Accepted: 28th November, 2024; Available Online: 05th December, 2024

*Author for Correspondence: ricardo.silva@villanova.edu

International Journal of Health Technology and Innovation
An Official Journal of Kalam Institute of Health Technology | ISSN - 2583-8547

RESEARCH ARTICLE

Backpropagation vs Genetic Algorithms in Neural Network Training

IJHTI, Volume3 Issue 3, September – December, 2024 Page 19

Fig. 1: Prototypical neural cell, comprised of: Dendrites, soma, and
axon

excite (positive) or inhibit (negative) the postsynaptic cell,
generating a partial response termed irritability. Notably, a
single synapse’s irritability alone is insufficient to trigger a full
response in the receiving cell. Instead, it is the cumulative effect
of tens to thousands of synapses, encompassing both excitatory
and inhibitory signals, that is integrated in the neuron’s soma.

If the combined inf luence of positive and negative
signals from the presynaptic cells surpasses a threshold, the
postsynaptic cell generates an electrical response known as an
action potential (AP). This AP travels along the axon, branching
into multiple terminals through a treelike structure called the
telodendria. Each telodendron terminates in a synaptic button
containing stored neurotransmitters. When the AP reaches the
synaptic button, neurotransmitter is released into the synaptic
cleft, where it is received by the postsynaptic cell.
Artificial Neural Networks (ANN)
The origins of ANNs can be traced back to the early 1940s,
marked by the collaboration between Warren McCulloch,
an American neurophysiologist and cybernetician at the
University of Illinois at Chicago, and Walter Pitts, a self-taught
logician and cognitive psychologist. Their groundbreaking
work introduced the concept of the “McCulloch-Pitts neuron.2”
This pioneering endeavor gave birth to the first mathematical
model of a neural network.

In 1949, Canadian psychologist Donald O’Hebb introduced
a seminal concept in the field of neural learning, proposing
a fundamental hypothesis for biological neurons that would
become widely recognized as Hebbian theory.3 Hebb’s theory
posited that neural connections between neurons strengthen
with activity. This principle can be summarized as “Neurons
that fire together wire together,” emphasizing the role of
repeated and persistent neural activity in shaping the brain’s
connectivity. This concept is commonly referred to as Hebbian
Learning and has played a significant role in the development
of artificial neural networks and neurobiology.

In 1958, a significant milestone in the field of artificial
neural networks was achieved with the development of the
perceptron by Frank Rosenblatt, an American psychologist
often referred to as the father of deep learning. The original
perceptron was created as an electronic device and was initially
simulated on an IBM 704 computer at Cornell Aeronautical
Laboratory.4

Rosenblatt’s groundbreaking work on perceptron’s laid a strong
foundation for subsequent developments in neural network
theory, and its principles continue to exert a significant influence
in the field of deep learning.5 Remarkably, the perceptron, as
shown in Fig. 2, with relatively minor modifications, remains
at the core of modern ANNs. The perceptron operates on a
relatively straightforward principle: it takes input signals and
multiplies them by corresponding weights, which represent
the strengths of synaptic connections. These weighted inputs
are then aggregated, usually through addition, and the result
is compared to a predefined threshold within the activation
function. When this aggregated value surpasses the threshold,
it triggers an activation signal, typically represented as a Digital
1. This fundamental concept of signal processing and decision-
making within a neural network has endured and evolved into
the complex and powerful deep learning models that underpin
many of today’s Artificial Intelligence (AI) applications.

Like natural neurons, a single perceptron possesses limited
computational utility. Perceptron’s are interconnected to form
layers, with data typically flowing from left to right, As shown
in the Fig. 3. The leftmost layer represents the input layer, where
each neuron corresponds to the data to be analyzed, such as
text or medical images. One or more hidden layers, where most
of the ANN’s processing capability resides, can exist. On the
far right is the output layer, which typically represents desired
outcomes, like identifying whether an image features a human
or an animal or determining the language of a document.
Present-day deep learning systems may comprise thousands
of hidden layers, each containing numerous neurons.
Training Artificial Neural Networks
The process of training artificial neural networks is a
fundamental concept in machine learning that involves refining
and optimizing the network’s parameters to perform a specific
task effectively. One crucial milestone in the development of
training methods for neural networks was the introduction
of backpropagation of errors, which was pioneered by Paul
Werbos, an American social scientist and machine learning
innovator, in his 1974 dissertation.6

Backpropagation can be likened to solving inverse
problems. It works by iteratively adjusting the network’s
internal parameters, such as weights and biases, based on the
discrepancies, or errors, between the network’s predictions and
the desired or target outputs. The goal is to minimize these

Fig. 2: The perceptron processes input signals and activates if the sum
exceeds a threshold.

Backpropagation vs Genetic Algorithms in Neural Network Training

IJHTI, Volume3 Issue 3, September – December, 2024 Page 20

errors, effectively training the network to make more accurate
predictions over time.

For example, in a supervised learning scenario where the
objective is to train an artificial neural network to distinguish
between human and non-human images, a training set of
labeled images is used. This training set comprises images
that have been previously evaluated by human experts to
determine whether each image depicts a human (positive
class) or a non-human (negative class). To ensure effective
training, it is essential to have a balanced training set,
which includes an equal number of human and non-human
images. The backpropagation algorithm then adjusts the
network’s parameters during training to reduce the errors in
its predictions, gradually improving its ability to correctly
classify new, unseen images. The objective is to determine
the precise weight required for each connection to confidently
classify human images.

Once the network is initialized, training data is passed
through the model from input to predicted output in a
feedforward step. Initially, the network’s accuracy is low.
Accuracy is typically assessed by computing the squared
difference between predictions and targets. Backpropagation
is responsible for calculating the error (loss function)
concerning the network’s weights for each input-output
example. Derivatives of the error are found, and weights are
adjusted based on these derivatives, gradually approaching
the configuration that minimizes error. This iterative process
is known as “backpropagation.” After multiple iterations, the
network becomes potentially trained and can be tested.

Testing involves using a new set of images, not part of
the training data but meeting the same criteria. The system’s
accuracy is evaluated, and if it meets expectations, it is
considered “trained” and can be applied to real data. If it falls
short of expectations, additional training is required, possibly
involving an expanded testing dataset. The advantage is that
subsequent training does not begin with random weights,
making convergence faster. Once an ANN is trained for a
specific task, it can only perform that task and requires new
training for different functions, such as distinguishing dogs

from cats using a similar architecture but distinct training data.
Remarkably, the backpropagation algorithm used in

training ANNs relies on the chain rule, a fundamental concept
in calculus that was first formulated by the renowned German
mathematician, philosopher, scientist, and diplomat Gottfried
Wilhelm Leibniz in 1673. Leibniz is often referred to as “The
Last Universal Genius” due to his significant contributions to
various fields of knowledge.

The chain rule, as formulated by Leibniz, states that if y is
a differentiable function of u, and u is a differentiable function
of x, then y is a differentiable function of x, and the derivative
of y with respect to x can be calculated as:

This rule is a fundamental tool in calculus for finding the
derivatives of composite functions, and it plays a crucial role
in various branches of mathematics and science, including
calculus, physics, and machine learning.

The utilization of the chain rule in backpropagation
allows neural networks to efficiently compute gradients,
which are essential for adjusting the network’s parameters
during training. By propagating errors backward through the
network and applying the chain rule, backpropagation enables
the network to learn and improve its performance over time,
making it a foundational technique in the field of ANN and
deep learning.

Genetic Algorithms
GAs are inspired by the process of natural selection and
genetics, introduced by John Holland in the 1970s.7 In the
context of GAs, we begin with a population, which consists
of a set of potential solutions to a given optimization
problem. Each solution within this population is represented
as a chromosome, which can be encoded as a string of bits,
numbers, or characters, depending on the specific problem
being addressed.

A chromosome is further divided into genes, each
representing a particular variable or attribute of the solution.
The overall quality or performance of these solutions is
evaluated using a fitness function. This function assigns a
fitness score to each individual based on how well it solves the
problem at hand, in the same way that accuracy determines
the efficacy of back propagation.

The selection process is critical as it determines which
individuals are chosen to reproduce and pass their genetic
material to the next generation. This selection is typically
biased towards individuals with higher fitness scores, akin to
selecting the best candidates for breeding in natural evolution.

Following selection, crossover (or recombination) is
employed to combine the genetic information of two parents to
produce new offspring. This genetic operator mimics biological
reproduction, creating new solutions that inherit traits from
both parents, thus fostering genetic diversity and innovation
within the population.
To ensure the population does not converge prematurely

Fig. 3: Artificial Neural Network consists of an input layer that receives
data, hidden layers that process and output layer that produces the result

Backpropagation vs Genetic Algorithms in Neural Network Training

IJHTI, Volume3 Issue 3, September – December, 2024 Page 21

to suboptimal solutions, a mutation operator is introduced.
Mutation involves making random alterations to some genes
in the chromosomes, thereby maintaining genetic diversity and
enabling the exploration of new areas in the solution space.

The Genetic Algorithm operates through an iterative
process, beginning with the initialization phase. During
this phase, an initial population of potential solutions is
generated randomly, establishing a diverse foundation for
the evolutionary process.

In the subsequent evaluation step, each individual in
the population is assessed using the fitness function. This
evaluation determines the fitness score of each solution,
providing a basis for comparison and selection.

The selection phase follows, wherein individuals are
chosen based on their fitness scores to serve as parents for
the next generation. The selection process is designed to favor
individuals with higher fitness, ensuring that advantageous
traits are propagated.

Next, the crossover operator is applied. This step involves
combining pairs of selected parents to produce new offspring,
thereby introducing new combinations of genetic material
into the population. Crossover promotes the exchange of
beneficial traits and enhances the overall adaptability of the
population.

To prevent genetic stagnation and encourage exploration
of the solution space, the mutation operator is employed.
Mutation introduces random changes to some genes in the
offspring, ensuring genetic diversity is maintained and novel
solutions are explored.

After generating the new offspring, the replacement
phase takes place. During this phase, the new population is
formed by replacing some or all of the old individuals with
the newly created ones. This iterative cycle of evaluation,
selection, crossover, mutation, and replacement continues
until a predetermined stopping criterion is met, such as
achieving a satisfactory solution or reaching a maximum
number of generations.

Through this evolutionary process, the Genetic Algorithm
incrementally refines the population of solutions, progressively
converging towards an optimal or near-optimal solution to the
problem. The principles of natural selection, recombination,
and mutation are thus harnessed to explore and exploit the
solution space effectively.

While there are multiple instances of research exploring
the combination of genetic algorithms and neural networks,8
particularly in areas like neural network architecture
optimization,9 direct application of genetic algorithms to train
the weights of a neural network is not common and for a very
long time has been assumed not to be an efficient approach.10

The primary reason for this is the complexity of the neural
network weight space. Genetic algorithms, while effective
in discrete search spaces, struggle to efficiently explore the
continuous, high-dimensional space of neural network weights.
Backpropagation, on the other hand, is specifically designed
for this task.8,10

Purpose
High performance computing and computation as a service has
made available immense amounts of computational capacity
that had previously been missing. The goal of this project is
to investigate the difference of two optimization approaches,
(backpropagation and genetic algorithms) in terms of
performance and running time on various traditional artificial
neural networks. For this purpose, we trained traditional neural
networks with genetic algorithms and backpropagation for
classification and regression on simulated datasets and publicly
available datasets. For implementation of these experiments,
we used google Collab which empowered with various Gen AI
tools such as Collab AI and Gemini. Using these tools helps
us to do more experiments in faster time.
Methods
We investigate the effects of backpropagation vs genetic
algorithms for fine tuning traditional neural networks. Three
different experiments were performed, in the first we generated
sample data from simple differentiable mathematical functions.
For the second and third experiments, we used publicly
available datasets with some level of noise, to compare efficacy
of training and convergence.
Simple Mathematical Function
For the first experiment we trained a simple one-layer neural
network with sigmoid activation function, to solve a two
variable mathematical function. This function is
and we generated 1000 data points. We used 80% of the data
for training the models and 20% for testing. The code for
generating the data is shown in Fig. 1. The code for training
neural network with genetic algorithm is shown in Fig. 4 and
the code for training neural network with backpropagation is
shown in Fig. 5 and with genetic algorithms in Fig. 6. In this
example we choose not to use any deep learning packages
and use only python math library, so the comparison of both
approaches could be fair.
Experiment on Diabetes Dataset
The second experiment that we conducted was with the
public diabetes dataset for Machine learning. The dataset
has 10 features and one numeric output. Total number of
observations in this dataset is 442 and we partitioned into train
and testing data. The training size was 80% of the data. The
full description of the dataset and the meaning of its features is
documented in the sklearn documentation (https://scikit-learn.
org/stable/datasets/toy_dataset.html).

Fig. 4: Code used to generate the Sample Data for the Simple
Mathematical Function

Backpropagation vs Genetic Algorithms in Neural Network Training

IJHTI, Volume3 Issue 3, September – December, 2024 Page 22

Code Description

For training neural network model with
backpropagation, we only instantiate one neural
network and update the weight of the network while
passing through the data and correcting the weights
so that the network output be close to the real outputs.

Figure 5: Code used to train the Simple Mathematical Function Artificial Neural Network with Backpropagation

Code Description
This code creates a class for Neural Networks with sigmoid acti-
vation function. The fitness function calculates the squared error
for each observation in the training/testing dataset and returns
the total error. By setting the Neural Networks as a class we can
instantiate many objects from the class and train them indepen-
dently. This network is quite simple with only two inputs and a
bias term.

The genetic algorithm function trains the neural network by in-
stantiating the number of individual neural networks in the popu-
lation Neural Network(). It then applies the fitness function to
each instance and calculates the total error. Finally, it sorts the
instances by fitness values and picks the first 50% (we can change
this for different experiments). During the training, it crosses over
the network weight based on the value of a random number and
mutates randomly with a little gaussian noise. Most of the code
was generated by google collab AI with user optimization for the
specific purpose.

Fig. 6: Training Simple Mathematical Function Neural Network with Genetic Algorithms

Backpropagation vs Genetic Algorithms in Neural Network Training

IJHTI, Volume3 Issue 3, September – December, 2024 Page 23

Table 1: Result of training simple mathematical function neural network with backpropagation

Experiment Learning Rate Number of Epochs Train MSE Test MSE Training Time (Seconds)

1 0.1 10 0.058 .051 0.021

2 0.3 20 0.086 0.079 0.037

3 0.05 50 0.076 0.068 0.083

4 0.1 100 0.094 0.085 0.3

5 0.05 2000 0.1 0.093 3.4

Table 2: Result of training simple mathematical function neural network with genetic algorithms

Experiment Parameters
(population size, mutation rate, crossover rate, generations) Train MSE Test MSE Training Time (Seconds)

1 (100,0.1,0.7,10) 0.133 0.126 1.27

2 (100,0.05,0.8,20) 0.13 0.122 2.38

3 (100,0.05,0.8,30) 0.1347 0.1262 4.89

4 (100,0.05,0.8,100) 0.1334 0.1264 12.8

5 (50,0.2,0.5,10) 0.1342 0.1258 0.67

6 (10,0.2,0.5,10) 0.1389 0.1285 0.13

7 (10,0.2,0.5,20) 0.14 0.1329 0.24

8 (10,0.5,0.5,5) 0.1555 0.1487 0.07

9 (10,0.01,0.5,5) 0.1449 0.137 0.067

10 (10,0.01,0.5,50) 0.1286 0.1198 0.61

We build a neural network to train with the diabetes dataset.
The neural network has a hidden layer with 10 neurons and
sigmoid activation functions and a final linear layer for the
regression. We trained the neural networks with the Keras
library for backpropagation and for training with the genetic
algorithms, we implemented the same algorithm presented
in Fig. 6.
Experiment with iris dataset
The third experiment was conducted for multi-class
classification. The iris dataset was utilized to conduct this
experiment. The iris dataset is a small dataset with 150
observations. There are 4 features in this dataset and one
multi-class output. For more detail about this dataset please
visit: https://archive.ics.uci.edu/dataset/53/iris.

RESULTS
We ran 10 experiments with different parameters for the Simple
Mathematical Function, until a small Mean Square Error (MSE)
was reached. The results of training with backpropagation is
summarized in Table 1, while the results for the same network
with genetic algorithms are presented in Table 2.

For the diabetes dataset, the results of the training of the
neural network with backpropagation are shown in Table 3,
while the results of training the same neural network with
genetic algorithms are shown in Table 4.
Results for the Iris dataset documented in Tables 5 and 6.

DISCUSSION
On the two variable differentiable mathematical function,
backpropagation performed significantly better than genetic
algorithms in both error, and training time. For the Diabetes
Dataset, we tested the model performance with different
settings and even limiting the number of generations to 1000
the model performance was above 5000 in MSE test. For
Diabetes Dataset experiments show that the genetic algorithm
can reach convergence fast (Table 3 vs Table 4); however,
more search is needed to fully evaluate the accuracy for real
data. For the Iris dataset genetic algorithm outperformed
backpropagation both from the accuracy and training time
perspective.

Up to this point it has been assumed that genetic algorithms
require more computational power than backpropagation and
that the larger the size of the neural network, the worse this
problem becomes. The general assumption is that genetic
algorithm memory usage that for large networks might be
considerable because it needs to instantiate a large population
of similar networks in contrast to backpropagation that only
needs one instance of neural network.

However, with the backpropagation we not only need
to understand the model architecture, but we also need to
understand the derivative across different network nodes. The
larger the size of the network the more time it takes for the
network to converge. Genetic algorithms, in the other hand, are

Backpropagation vs Genetic Algorithms in Neural Network Training

IJHTI, Volume3 Issue 3, September – December, 2024 Page 24

Table 3: Result of training diabetes dataset neural network with back propagation

Experiment Learning Rate Number of Epochs Train MSE Test MSE Training Time (Seconds)
1 0.05 20 16371 17271 10.72
2 0.05 100 6300 5823 49.83
3 0.1 50 31117 33597 41.31
4 0.01 200 6576 5505 103
5 0.001 300 2619 2751 202

Table 4: Result of training diabetes dataset neural network with genetic algorithms

Experiment Parameters
(population size, mutation rate, crossover rate, generations) Train MSE Test MSE Training Time (Seconds)

1 (10,0.1,0.5,10) 28035 24972 0.34

2 (100,0.1,0.5,50) 11738 9825 2.08

3 (100,0.05,0.5,100) 21907 19189 3.83

4 (100,0.05,0.5,500) 45664 41781 21.46

5 (200,0.1,0.5,100) 6076 5361 9.07

6 (200,0.2,0.5,500) 6102 5301 202

Table 5: Result of training iris dataset neural network with backpropagation

Experiment Learning Rate Number of Epochs Train Accuracy Test Accuracy Training Time (Seconds)

1 0.05 20 67 63 2.3

2 0.05 100 67 63 4.5

3 0.1 50 79 76 4.4

4 0.01 1000 94.1 93.3 41

5 0.02 5000 98.4 100 203

Table 6: Result of training iris dataset neural network with genetic algorithms

Experiment Parameters
(population size, mutation rate, crossover rate, generations) Train Accuracy Test Accuracy Training Time (Seconds)

1 (10,0.1,0.5,10) 65 70 0.08

2 (100,0.1,0.5,50) 66 70 3

3 (100,0.05,0.5,100) 65 70 6

4 (100,0.05,0.5,500) 32 36 18

5 (100,0.1,0.5,1000) 97.5 96.6 37.7

6 (200,0.01,0.5,2000) 98.5 100 138

architecture independent and the iterative process is identical,
independent of the size of the network.

CONCLUSION
The effects of optimization approaches on neural network
training were investigated, in terms of model test accuracy
and training time. The article compared genetic algorithms
with the traditional backpropagation methodology. Genetic
algorithms can be implemented for any model architecture.
In terms of accuracy and training time, our experiments show
that genetic algorithms can provide good convergence, even
faster than backpropagation.

There is not enough information to conclude that genetic
algorithms can outperform backpropagation or vice versa.
The choice genetic algorithms vs backpropagation depends
on the complexity of the problem. If the network is complex
and obtaining derivation formula is not straightforward, we do
think genetic algorithms are a proper alternative and further
research would be needed to validate this approach.

REFERENCES
1.	 Cajal SR. Texture of the Nervous System of Man and the

Vertebrates. Wien: Springer-Verlag; 1999.
2.	 McCulloch WS, Pitts W. A logical calculus of the ideas immanent

Backpropagation vs Genetic Algorithms in Neural Network Training

IJHTI, Volume3 Issue 3, September – December, 2024 Page 25

in nervous activity. Bull Math Biophys. 1943;5:115–33.
3.	 Hebb D. The Organization of Behavior: A Neuropsychological

Theory. New ed. Psychology Press; 2002.
4.	 Rosenblatt F. Cornell Aeronautical Laboratory. Report no.

VG-1196-G-8; 1962.
5.	 Rosenblatt F. Principles of Neurodynamics: Perceptrons and the

Theory of Brain Mechanisms. Spartan Books; 1962.
6.	 Werbos P. The Roots of Backpropagation: From Ordered

Derivatives to Neural Networks and Political Forecasting. New

York: John Wiley & Sons; 1994.
7.	 Holland J. Adaptation in Natural and Artificial Systems.

University of Michigan Press; 1975.
8.	 Yao X. Evolving artif icial neural networks. Proc IEEE.

1999;87(9):1423–47.
9.	 Stanley KM, Miikkulainen R. Evolving neural networks through

augmenting topologies. Evol Comput. 2002;10(2):99–127.
10.	 Whitley D, Starkweather T, Bogart C. Genetic algorithms and

neural networks: optimizing connections and connectivity.
Parallel Comput. 1990;14(3):347–61.

